Log in

Optical and Electrical Properties of In-doped ZnO Films via the Spray Pyrolysis Technique for Optoelectronics Device Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Indium-doped ZnO thin films were prepared using the spray pyrolysis technique, and their electrical properties were investigated. The films were characterized using different techniques, including x-ray diffraction (XRD), scanning electron microscopy, energy-dispersive x-ray analysis, UV–Vis spectroscopy, and Hall measurements. The XRD pattern confirmed that all films had a polycrystalline hexagonal wurtzite crystal structure. An undoped ZnO film showed a preferred crystalline orientation along the (002) peak, while for In-doped ZnO thin films, the preferred orientation changed from the (002) peak to the (101) peak. The surface morphology of the ZnO film changed from a hexagonal nanorod-like structure to a nanorod structure after indium do**. The presence of zinc, oxygen, and indium elements was confirmed by an energy-dispersive spectrometer. Optical studies showed transmittance of 80% for the deposited films, and it decreased with In do**. The optical band gap increased with indium concentration. Hall effect measurements revealed that all the films showed n-type conductivity. The films deposited at 2% In content were found to have relatively low resistivity of 0.937 Ω cm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Smaali, S. Abdelli, A. Lafane, J. Mavlonov, S. Lenzner, M. Richter, O. Kechouane, and K. Nemraoui, Ellmer, Pulsed Laser Deposited Transparent and Conductive V-doped ZnO Films. Thin Solid Films 700, 137892 (2020).

    Article  CAS  Google Scholar 

  2. Y. Su, C. Chiou, V. Marinova, S. Lin, N. Bozhinov, and B. Blagoev, Atomic Layer Deposition Prepared Al-doped ZnO for Liquid Crystal Displays Applications. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-018-1469-1.

    Article  Google Scholar 

  3. A. Sharmin, S. Tabassum, M. Bashar, and Z. Mahmood, Depositions and Characterization of Sol–gel Processed Al-doped ZnO (AZO) as Transparent Conducting Oxide (TCO) for Solar Cell Application. J. Theor. Appl. Phys. 13, 123 (2019).

    Article  Google Scholar 

  4. J. Beckford, M. Behera, K. Yarbrough, B. Obasogie, S. Pradhan, and M. Bahoura, Gallium Doped Zinc Oxide Thin Films as Transparent Conducting Oxide for Thin-Film Heaters. AIP Adv. 11, 075208 (2021).

    Article  CAS  Google Scholar 

  5. F. He, Y. Wang, H. Yuan, Z. Lin, J. Su, and J. Zhang, Solution Processed In2O3/IGO Heterojunction Thin Film Transistors with High Carrier Concentration. Ceram. Int. 47, 35029 (2021).

    Article  CAS  Google Scholar 

  6. V.N. Krasil’nikov, I.V. Baklanova, V.P. Zhukov, ОI. Gyrdasova, ТV. Dyachkova, and АP. Tyutyunnik, Thermally Stimulated Infrared Shift of Cadmium Oxide Optical Absorption Band Edge. Mater. Sci. Semicond. Process. 124, 105605 (2021). https://doi.org/10.1016/j.mssp.2020.105605.

    Article  CAS  Google Scholar 

  7. D.T. Peaks, Effect of Concentration, Aging, and Annealing on Sol Gel ZnO and Al-doped ZnO Thin Films. Int. J. Mech. Mater. Eng. 15, 2 (2020).

    Article  Google Scholar 

  8. G.L. Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, and Q. Chu, Structures, Morphological Control, and Antibacterial Performance of Tungsten Oxide Thin Films. Ceram. Int. 47, 17153 (2021).

    Article  CAS  Google Scholar 

  9. J. Li, C. Mu and X. Li, Structure and Physical Properties Evolution of ITO Film During Amorphous-Crystalline Transition Using a Highly Effective Annealing Technique. Ceram. Int. 45, 16214 (2019).

    Article  CAS  Google Scholar 

  10. U. Rehman, M. Kanwal, K. Mahmood, A. Ashfaq, A. Ali, and S. Tahir, Improving the Thermoelectric Properties of Zinc Tin Oxide Thin Films by Varying Post Growth Annealing Duration. Ceram. Int. 47, 32371 (2021).

    Article  CAS  Google Scholar 

  11. M. Zhang, Y. Tang, X. Tian, H. Wang, J. Wang, and Q. Zhang, Magnetron co-Sputtering Optimized Aluminum-doped Zinc Oxide (AZO) Film for High-Response Formaldehyde Sensing. J. Alloys Compd. 880, 160510 (2021). https://doi.org/10.1016/j.jallcom.2021.160510.

    Article  CAS  Google Scholar 

  12. Y. Vijayakumar, P. Nagaraju, V. Yaragani, S. Parne, N. Awwad, and M. Ramana Reddy, Nanostructured Al and Fe co-doped ZnO Thin Films for Enhanced Ammonia Detection. Phys B. Condens. Matter. 58, 411976 (2020).

    Article  Google Scholar 

  13. S. Swathi, E. Sunil Babu, R. Yuvakkumar, G. Ravi, A. Chinnathambi, S. Ali Alharbi, and D. Velauthapillai, Branched and Unbranched ZnO Nanorods Grown via Chemical Vapor Deposition Photoelectrochemical Water Splitting Application. Ceram. Int. 47, 9785 (2021).

    Article  CAS  Google Scholar 

  14. S. Roguai and A. Djelloul, A Structural and Optical Properties of Cu-Doped ZnO Films Prepared by Spray Pyrolysis. Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).

    Article  Google Scholar 

  15. Y. Pepe, M. Yildirim, A. Karatay, A. Ates, H. Unver, and A. Elmali, The Effect of Do** and Annealing on the Nonlinear Absorption Characteristics in Hydrothermally Grown Al Doped ZnO Thin Films. Opt. Mater. 98, 109495 (2019).

    Article  CAS  Google Scholar 

  16. F. Baig, A. Asif, M. Waseem Ashraf, and H. Muhammad Fahad, Tailoring of Optical, Hydrophobic, and Anti-icing Properties of Ca–Mg co-doped ZnO Thin Films via sol–gel Method. J. Sol-Gel Sci. Technol. 97, 706 (2021).

    Article  CAS  Google Scholar 

  17. A. Mostafa and E. Mwafy, Synthesis of ZnO and Au-ZnO core/shell Nano-catalysts by Pulsed Laser Ablation in Different Liquid Media. J. Mater. Res. Technol. 9, 3241 (2020).

    Article  CAS  Google Scholar 

  18. V. Kumar, S.K. Singh, H. Sharma, S. Kumar, M.K. Banerjee, and A. Vij, Investigation of Structural and Optical Properties of ZnO Thin Films of Different Thickness Grown by Pulse Laser Deposition Method. Phys. B Phys. Condens. Matter 552, 221 (2019).

    Article  CAS  Google Scholar 

  19. Y. Wang, J. Song, J. Zhang, G. Zheng, X. Duan, X. **e, B. Han, X. Meng, F. Yang, G. Wang, Y. Zhao, and J. Li, Effect of Substrate Temperature on F and Al co-doped ZnO Films Deposited Byradio Frequency Magnetron Sputtering. Sol. Energy 194, 471 (2019).

    Article  CAS  Google Scholar 

  20. D. Mahesh and M.S. Kumar, Synergetic Effects of Aluminium and Indium Dopants in the Physical Properties of ZnO Thin Films via Spray Pyrolysis. Superlattices Microstruct. 142, 106511 (2020).

    Article  CAS  Google Scholar 

  21. A. Lopez-Suarez, D. Acosta, C. Magana, and F. Hernandez, Optical, Structural and Electrical Properties of ZnO Thin Films Doped with Mn. J. Mate. Sci. Mater. Electron. 31, 7389 (2020).

    Article  CAS  Google Scholar 

  22. M. Aleksandrova, Polymeric Seed Layer as a Simple Approach for Nanostructuring of Ga-doped ZnO Films for Flexible Piezoelectric Energy Harvesting. Microelectron. Eng. 233, 111434 (2020).

    Article  CAS  Google Scholar 

  23. A. Ambedkar, M. Singh, V. Kumar, B. Pal Singh, A. Kumar, and Y. Gautam, Structural, Optical and Thermoelectric Properties of Al-doped ZnO Thin Films Prepared by Spray Pyrolysis. Surf. Interfaces 19, 100504 (2020).

    Article  CAS  Google Scholar 

  24. A. Alsaad, A. Ahmad, I. Qattan, Q. Al-Bataineh, and Z. Albataineh, Structural, Optoelectrical, Linear, and Nonlinear Optical Characterizations of Dip-synthesized Undoped ZnO and Group-III Elements (B, al, ga, and in)-doped ZnO Thin Films. Curr. Comput.-Aided Drug Des. 10, 252 (2020).

    CAS  Google Scholar 

  25. L.-H. Wong and Y.-S. Lai, Substrate Temperature Dependence of Material, Optical and Electrical Properties of Boron Doped ZnO Thin Films. Opt. Mater. 115, 111052 (2021).

    Article  CAS  Google Scholar 

  26. L. Dintle, P. Luhanga, M. Cand, and C. Muiva, Compositional Dependence of Optical and Electrical Properties of Indium Doped Zinc Oxide (IZO) Thin Films Deposited by Chemical Spray Pyrolysis. Phys. E: Low Dimension Syst. Nanostruct. 99, 91 (2018).

    Article  CAS  Google Scholar 

  27. P. Dhamodharan, J. Chen, and C. Manoharan, Fabrication of In-doped ZnO Thin Films by Spray Pyrolysis as Photoanode in DSSCs. Surf. Interfaces 23, 100965 (2021).

    Article  CAS  Google Scholar 

  28. N. Kumar, A. Haider Chowdhury, B. Bahrami, M. Raza Khan, and M. Kumar, Origin of Enhanced Carrier Mobility and Electrical Conductivity in Seed Layer Assisted Sputtered Grown Al-doped ZnO Thin Films. Thin Solid Films 700, 13716 (2020).

    Article  Google Scholar 

  29. A.P. Rambu, D. Sirbu, A.V. Sandu, G. Prodan, and V. Nica, Influence of In-Do** on Electro-Optical Properties of ZnO Films. Bull. Mater. Sci. 36, 231 (2013).

    Article  CAS  Google Scholar 

  30. G. Malik, S. Mourya, J. Jaiswal, and R. Chandra, Effect of Annealing Parameters on Optoelectronic Properties of Highly Ordered ZnO Thin Films. Mater. Sci. Semicond. Process. 100, 200 (2019).

    Article  CAS  Google Scholar 

  31. D. Ali, M.Z. Butt, C. Coughlan, D. Caffrey, I.V. Shvets, and K. Fleischer, Nitrogen Grain-Boundary Passivation of In-doped ZnO Transparent Conducting Oxide. Phys. Rev. Materials 2, 043402 (2018).

    Article  CAS  Google Scholar 

  32. Y. Fang, J.R. Dilworth, M. Pepper, and P.P. Edwards, Investigations of the Optical and Electronic Effects of Silicon and Indium co-do** on ZnO Thin Films Deposited by Spray Pyrolysis. Zeitschrift fur Naturforschung B 75, 23 (2020).

    Article  Google Scholar 

  33. P. Doni, W. Joseph, K. Hariprasad, V. Ganesh, A. Elhosiny, H. Algarni, and I. Yahi, Enhancement of Optoelectronic Properties of ZnO Thin Films by Al Do** for Photodetector Applications. Superlattices Microstruct. 151, 106790 (2021).

    Article  Google Scholar 

  34. D. Bao, H. Gu, and A. Kuang, Sol Gel Derived c-axis Orientated ZnO Films. Thin Solid Films 312, 37 (1998).

    Article  CAS  Google Scholar 

  35. S. Shinde, P. Shinde, C. Bhosale, and K. Rajundoped, Optoelectronic Properties of Sprayed Transparent and Conducting Indium Doped Zinc Oxide Thin Films. J. Phys. D: Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/10/105109.

    Article  Google Scholar 

  36. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, and M. Dahlem, Highly Transparent Conducting Cerium Incorporated CdO Thin Films Deposited by a Spray Pyrolytic Technique. RSC Adv. 5, 102741 (2015).

    Article  CAS  Google Scholar 

  37. S. Dev, P. Kumar, A. Rani, A. Agarwal, and R. Dhar, Development of Indium Doped ZnO Thin Films for Highly Sensitive Acetylene (C2H2) Gas Sensing. Superlattices Microstruct. 145, 106638 (2020).

    Article  CAS  Google Scholar 

  38. K. Radhi Devi, G. Selvan, M. Karunakaran, I.L. Poul Raj, V. Ganesh, and S. Al Faify, Enhanced Room Temperature Ammonia Gas Sensing Properties of Strontium Doped ZnO Thin Films by Cost-Effective SILAR Method. Mater. Sci. Semicond. Process. 119, 105117 (2020).

    Article  CAS  Google Scholar 

  39. A. Goktas, I. Mutlu, and Y. Yamada, Influence of Fe-do** on the Structural, Optical, and Magnetic Properties of ZnO Thin Films Prepared by Sol–gel Method. Superlattices Microstruct. 57, 139 (2013).

    Article  CAS  Google Scholar 

  40. M. Saleem, S. Siddiqi, S. Atiq, M. Anwar, I. Hussain, and S. Alam, Carriers-Mediated Ferromagnetic Enhancement in Al-doped Zn-MnO Dilute Magnetic Semiconductors. Mater. Char. 62, 1102 (2011).

    Article  CAS  Google Scholar 

  41. P. Raghavendra, J. Bhat, and N. Deshpande, Enhancement of Photoluminescence in Sr Doped ZnO Thin Films Prepared by Spray Pyrolysis. Mater. Sci. Semicond. Process. 68, 262 (2017).

    Article  CAS  Google Scholar 

  42. M. Rajendra Prasad, M. Haris, and M. Sridharan, Investigation on Structural, Morphological, Optical and Ammonia Sensing Properties Indium Doped Nano Crystalline ZnO Thin Films Synthesized by Spray Pyrolysis Technique. Sens. Imaging (2018). https://doi.org/10.1007/s11220-018-0211-1.

    Article  Google Scholar 

  43. S. Bharath, K. Bangera, and G. Shivakumar, Enhanced Gas Sensing Properties of Indium Doped ZnO Thin Films. Superlattices Microstruct. 124, 72 (2018).

    Article  CAS  Google Scholar 

  44. S. Pati, P. Banerji, and S. Majumder, Properties of Indium Doped Nanocrystalline ZnO Thin Films and their Enhanced Gas Sensing Performance. RSC Adv. 5, 61230 (2015).

    Article  CAS  Google Scholar 

  45. Y. Benkhetta, A. Attaf, H. Saidi, R. Messemeche, A. Bouhdjer, H. Bendjedidi, I.B. Kherkhachi, and A. Rahil, Controlling of c-axis Position of ZnO Nano-Crystalline Films Deposited at Various Substrate Temperature by Ultrasonic Spray Method. Surf. Interfaces 21, 100698 (2020).

    Article  CAS  Google Scholar 

  46. R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navas, U.V. Nayar, V.P. Mahadevan Pillai, V. Ganesan, and V.R. Reddy, Effect of ITO Buffer Layers on the Structural, Optical and Electrical Properties of ZnO Multilayer Thin Films Prepared by Pulsed Laser Deposition Technique. Sol. Energy Mater. Sol. Cells. 94, 68 (2010).

    Article  CAS  Google Scholar 

  47. N. Zohra, I. Saima, R. Rida, R. Saira, and N. Shahzad, Effect of Cu Do** on the Structural, Magnetic and Optical Properties of ZnO Thin Films. Appl. Phys. A 124, 468 (2018).

    Article  Google Scholar 

  48. Y. Kim and J.-Y. Leem, Effects of Do** Concentration on the Structural and the Optical Properties of Sol-gel-derived In-doped ZnO Thin Films Grown on Muscovite Mica Substrates. J. Korean Phys. Soc. 66, 1516 (2015). https://doi.org/10.3938/jkps.66.1516.

    Article  CAS  Google Scholar 

  49. R. Biswal, A. Maldonado, J. Vega-Pérez, D.R. Acosta, and M. De La Luz Olvera, Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride. Materials 7, 5038 (2014). https://doi.org/10.3390/ma7075038.

    Article  CAS  Google Scholar 

  50. D. Mahesh and M. Santhosh Kumar, An investigation on the In-Do** of ZnO Thin Films by Spray Pyrolysis. AIP Conf. Proc. 1942, 080049 (2018).

    Article  Google Scholar 

  51. B. Sahoo, D. Behera, S.K. Pradhan, D.K. Mishra, S.K. Sahoo, R.R. Nayak, and K.P.C. Sekhar, Analysis of Structural, Optical and Electrical Properties of Nano-particulate Indium Doped Zinc Oxide Thin Films. Mater. Res. Express 6, 1150a6 (2019). https://doi.org/10.1088/2053-1591/ab4cbd.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Mote.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathwate, L.H., Mote, V.D. Optical and Electrical Properties of In-doped ZnO Films via the Spray Pyrolysis Technique for Optoelectronics Device Applications. J. Electron. Mater. 51, 6894–6902 (2022). https://doi.org/10.1007/s11664-022-09918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09918-8

Keywords

Navigation