Log in

Conversion from p- to n-Type Conductivity in CuO Thin Films Through Zr Do**

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CuO films with Zr do** were successfully fabricated on substrates of soda-lime glass (SLG) using a spin-coating method at various do** concentrations. X-ray diffraction (XRD) patterns for pure and Zr-doped CuO thin films indicated that all thin CuO films have a monoclinic polycrystalline nature, with two maximum peaks (−111) and (111). The dislocation density values of the (−111) and (111) planes are increased from 13.4 × 1014 to 34.9 × 1014 m−2 and from 26 × 1014 to 42.7 × 1014 m−2, respectively, owing to the expansion of structural parameters with Zr dopant content. Scanning electron microscopy (SEM) indicated nanostructure particles uniformly distributed on all thin-film surfaces without any agglomerated nanostructure particles. The thickness of CuO films in conjunction with Zr do** is approximately 460 nm. The EDX spectrum of pure CuO in thin film contains Cu and O elements; 1%, 2%, and 3% Zr-doped CuO thin films contain Zr, Cu, and O elements, as expected. Atomic force microscopy (AFM) figures indicate that the surface topologies of thin films are uniformly distributed. Ultraviolet–visible spectroscopy (UV–Vis) measurements of the thin films revealed that the transmittance increased from 25% to 45% in the visible range with increasing Zr concentration at room temperature. The energy band gap increased from 1.67 to 2.03 eV with increasing Zr concentration. At room temperature, a Hall effect system was used to investigate the electrical parameters, including carrier concentration, resistivity, conductivity type, and hole mobility of the CuO films with Zr do**. Conductivity type conversion was observed with 2% and 3% Zr-doped CuO, and confirmed by capacity–voltage \((C-V\)) measurements. The charge-carrier concentration of the samples ranged from 1.08 × 1016 to 5.06 × 1018 cm−3 with Zr do**. Thus, the optical and electrical properties of CuO thin film such as the band gap energy, transmittance, and carrier mobility can be modified.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Singh and R.K. Bedi, Studies and Correlation Among the Structural, Electrical and Gas Response Properties of Aerosol Spray Deposited Self Assembled Nanocrystalline CuO. Appl. Surf. Sci. 257, 7592 (2011).

    Article  CAS  Google Scholar 

  2. L. Zheng and X. Liu, Solution-Phase Synthesis of CuO Hierarchical Nanosheets at Near-Neutral pH and Near-Room Temperature. Mater. Lett. 61, 2222 (2007).

    Article  CAS  Google Scholar 

  3. S.C. Ray, Preparation of Copper Oxide Thin Film by the sol–gel-Like Dip Technique and Study of Their Structural and Optical Properties. Sol. Energy Mater. Sol. Cells. 68, 307 (2001).

    Article  CAS  Google Scholar 

  4. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, and M.T. Czyzyk, Electronic Structure of Cu2O and CuO. Phys. Rev. B. 38, 11322 (1988).

    Article  CAS  Google Scholar 

  5. L.O. Grondahl, Copper-Cuprous-Oxide Rectifier and Photoelectric Cell. Rev. Mod. Phys. 5, 141 (1933).

    Article  CAS  Google Scholar 

  6. H.C. Lu, C.L. Chu, C.Y. Lai, and Y.H. Wang, Property Variations of Direct-Current Reactive Magnetron Sputtered Copper Oxide Thin Films Deposited at Different Oxygen Partial Pressures. Thin Solid Films 517, 4408 (2009).

    Article  CAS  Google Scholar 

  7. C. Zuo and L. Ding, Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 11, 5528 (2015).

    Article  CAS  Google Scholar 

  8. H. Wang, P. Qinmin, Z. Jianwei, Y. Ge**, and Z. Pengjian, Fabrication of CuO Film with Network-like Architectures Through Solution-Immersion and Their Application in Lithium Ion Batteries. J. Power Sources. 167, 206 (2007).

    Article  CAS  Google Scholar 

  9. B.S. Kang, S.E. Ahn, M.J. Lee, G. Stefanovich, K.H. Kim, W.X. **anyu, C.B. Lee, Y. Park, I.G. Baek, and B.H. Park, High-Current-Density CuOx/InZnOx Thin-Film Diodes for Cross-Point Memory Applications. Adv. Mater. 20, 3066 (2008).

    Article  CAS  Google Scholar 

  10. T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, and Y. Takita, Preparation of CuO Thin Films on Porous BaTiO3 by Self-Assembled Multibilayer Film Formation and Application as a CO2 Sensor. J. Mater. Chem. 8, 2037 (1998).

    Article  CAS  Google Scholar 

  11. N.D. Hoa, N.V. Quy, H. Jung, D. Kim, H. Kim, and S.K. Hong, Synthesis of Porous CuO Nanowires and its Application to Hydrogen Detection. Sens. Actuat B 146, 266 (2010).

    Article  CAS  Google Scholar 

  12. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, and C.D. Lokhande, Fabrication of Copper Oxide Multilayer Nanosheets for Supercapacitor Application. J. Alloys Compd. 492, 26 (2010).

    Article  CAS  Google Scholar 

  13. M. Al-Kuhaili, Characterization of Copper Oxide Thin Films Deposited by the Thermal Evaporation of Cuprous Oxide (Cu2O). Vacuum 82, 623 (2008).

    Article  CAS  Google Scholar 

  14. S.H. Wee, P.S. Huang, J.K. Lee, and A. Goyal, Heteroepitaxial Cu2O thin film solar cell on metallic substrates. Sci. Rep. 5, 1 (2015).

    Google Scholar 

  15. V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Effect of Post-Annealing on the Properties of Copper Oxide Thin Films Obtained from the Oxidation of Evaporated Metallic Copper. Appl Surf Sci 254, 3949 (2008).

    Article  CAS  Google Scholar 

  16. Y. Gülen, F. Bayansal, B. Şahin, H.A. Çetinkara, and H.S. Güder, Fabrication and Characterization of Mn-Doped CuO Thin Films by the SILAR Method. Ceram. Int. 39, 6475 (2013).

    Article  CAS  Google Scholar 

  17. C.Y. Chiang, Y. Shin, and S. Ehrman, Li Doped CuO Film Electrodes for Photoelectrochemical Cells. J. Electrochem. Soc. 159, 227 (2011).

    Article  CAS  Google Scholar 

  18. J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, and P.S. Patil, Synthesis and Characterization of Ru Doped CuO Thin Films for Supercapacitor Based on Bronsted Acidic Ionic Liquid. Electrochim Acta. 56, 2127 (2011).

    Article  CAS  Google Scholar 

  19. J. Huang, H. Wu, D. Cao, and G. Wang, Influence of Ag Doped CuO Nanosheet Arrays on Electrochemical Behaviors for Supercapacitors. Electrochim Acta. 75, 212 (2012).

    Google Scholar 

  20. J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, and M. Sánchez, Nanostructured CuO Thin Film Electrodes Prepared by Spray Pyrolysis: A Simple Method for Enhancing the Electrochemical Performance of CuO in Lithium Cells. Electrochim Acta. 49, 4589 (2004).

    Article  CAS  Google Scholar 

  21. H.Y. Bae and G.M. Choi, Electrical and Reducing Gas Sensing Properties of ZnO and ZnO–CuO Thin Films Fabricated by Spin Coating Method. Sens. Actuators. B. 55, 47 (1999).

    Article  Google Scholar 

  22. K. Santra, C.K. Sarkar, M.K. Mukherjee, and B. Ghosh, Copper Oxide Thin Films Grown by Plasma Evaporation Method. Thin Solid Films 213, 226 (1992).

    Article  CAS  Google Scholar 

  23. S. Sohrabnezhad, M.M. Moghaddam, and T. Salavatiyan, Synthesis and Characterization of CuO–Montmorillonite Nanocomposite by Thermal Decomposition Method and Antibacterial Activity of Nanocomposite. Spectrochim. Acta, Part A. 125, 73 (2014).

    Article  CAS  Google Scholar 

  24. T. Serin, Ş Horzum, and Y. Celik, Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition. Semicond. Sci. Technol. 20, 398 (2005).

    Article  CAS  Google Scholar 

  25. D.P. Joseph, C. Venkateswaran, S. Sambasivam, and B.C. Choi, Effect of Fe Alloying on the Structural, Optical, Electrical and Magnetic Properties of Spray-Deposited CuO Thin Films. J. Korean Phys. Soc. 61, 449 (2012).

    Article  CAS  Google Scholar 

  26. Y. Wang, T. Jiang, D. Meng, D. Wang, and M. Yu, Synthesis and Enhanced Photocatalytic Property of Feather-Like Cd-Doped CuO Nanostructures by Hydrothermal Method. Appl. Surf. Sci. 355, 196 (2015).

    Article  CAS  Google Scholar 

  27. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Dilute Hydrogen Sulfide Sensing Properties of CuO–SnO2 Thin Film Prepared by Low-Pressure Evaporation Method. Sens. Actuat B 49, 121 (1998).

    Article  CAS  Google Scholar 

  28. J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, and M. Sánchez, Use of Low-temperature Nanostructured CuO Thin Films Deposited by Spray-Pyrolysis in Lithium Cells. Thin Solid Films 474, 133 (2005).

    Article  CAS  Google Scholar 

  29. L. Obulapathi, A.G. Kumar, T.S. Sarmas, and T.S. Rao, Room Temperature Studies of Cr Doped Copper Oxide Thin Films by Reactive Dc Magnetron Sputtering. Int J Nanotechnol Appl. 4, 29 (2014).

    Google Scholar 

  30. C. Tamuly, I. Saikia, M. Hazarika, and M.R. Das, Reduction of Aromatic Nitro Compounds Catalyzed by Biogenic CuO Nanoparticles. RSC Adv. 4, 53229 (2014).

    Article  CAS  Google Scholar 

  31. D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, Effect of Annealing on the Properties of Nanostructured CuO Thin Films for Enhanced Ethanol Sensitivity. Ceram. Int. 39, 7685 (2013).

    Article  CAS  Google Scholar 

  32. B.D. Cullity, Elements of X-ray Diffraction, 1st ed., (Boston: Addison-Wesley Publishing, 1956).

    Google Scholar 

  33. H. Mersian, M. Alizadeh, and N. Hadi, Synthesis of Zirconium Doped Copper Oxide (CuO) Nanoparticles by the Pechini Route and Investigation of their Structural and Antibacterial Properties. Ceram. Int. 44, 20399 (2018).

    Article  CAS  Google Scholar 

  34. M. Barsoum, Fundamentals of Ceramics, 2nd ed., (Boca Raton: CRC Press, 2019).

    Book  Google Scholar 

  35. K. Mageshwari and R. Sathyamoorthy, Physical Properties of Nanocrystalline CuO Thin Films Prepared by the SILAR Method. Mater. Sci. Semicond. Process. 16, 337 (2013).

    Article  CAS  Google Scholar 

  36. C. Gao, H. Shen, L. Sun, and Z. Shen, Chemical Bath Deposition of Bi2S3 Films by a Novel Deposition System. Appl. Surf. Sci. 257, 7529 (2011).

    Article  CAS  Google Scholar 

  37. S.M. Jabbar, Synthesis of CuO Nano Structure Via Sol-gel and Precipitation Chemical Methods. Al-Khawarizmi Eng. J. 12, 126 (2016).

    Article  Google Scholar 

  38. S. Anandan and S. Yang, Emergent Methods to Synthesize and Characterize Semiconductor CuO Nanoparticles with Various Morphologies–An Overview. J. Exp. Nanosci. 2, 23 (2007).

    Article  CAS  Google Scholar 

  39. S. Manjunatha, R.H. Krishna, T. Thomas, B.S. Panigrahi, and M.S. Dharmaprakash, Moss-Burstein Effect in Stable, Cubic ZrO2: Eu+3 Nanophosphors Derived from Rapid Microwave-Assisted Solution-Combustion Technique. Mater. Res. Bull. 98, 139 (2018).

    Article  CAS  Google Scholar 

  40. C. Muiva, T. Sathiaraj, and K. Maabong, Effect of Do** Concentration on the Properties of Aluminium Doped Zinc Oxide Thin Films Prepared by Spray Pyrolysis for Transparent Electrode Applications. Ceram. Int. 37, 555 (2011).

    Article  CAS  Google Scholar 

  41. J. Tauc, Amorphous and Liquid Semiconductors, 1st ed., (Berlin: Springer, 2012).

    Google Scholar 

  42. M. Balog, M. Schieber, M. Michman, and S. Patai, The Chemical Vapour Deposition and Characterization of ZrO2 Films from Organometallic Compounds. Thin Solid Films 47, 109 (1977).

    Article  CAS  Google Scholar 

  43. S. Jena, R.B. Tokas, S. Thakur, and N.K. Sahoo, Optical Properties of Electron Beam Evaporated ZrO2: 10% SiO2 thin films: Dependence on Structure. Indian J. Phys. 90, 951 (2016).

    Article  CAS  Google Scholar 

  44. G.Y. Naser, W.N. Raja, A.S. Faris, Z.J. Rahem, M.A. Salih, and A.H. Ahmed, Some Optical Properties of CdO Thin Films. Energy Procedia. 36, 42 (2013).

    Article  CAS  Google Scholar 

  45. M. Wang, J. Liu, J. Hu, and F. Liu, O2–CO2 Mixed Gas Production Using a Zr-Doped Cu-Based Oxygen Carrier. Ind. Eng. Chem. Res. 54, 9805 (2015).

    Article  CAS  Google Scholar 

  46. H. **hong, F. Gao, Y. **ang, H. Wu, X. Zheng, J. Jiang, J. Li, H. Yang, and S. Liu, Influence of Oxygen Pressure on the Structural and Electrical Properties of CuO Thin Films Prepared by Pulsed Laser Deposition. Mater. Lett. 176, 282 (2016).

    Article  CAS  Google Scholar 

  47. A. Ogwu, T. Darma, and E. Bouquerel, Electrical Resistivity of Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering. J. Achiev. Mater. Manuf. Eng. 24, 172 (2007).

    Google Scholar 

  48. E.K. Shokr, M.M. Wakkad, H.A. Abd El-Ghanny, and H.M. Ali, Sb-Do** Effects on Optical and Electrical Parameters of SnO2 Films. J. Phys. Chem. Solids. 61, 75 (2000).

    Article  CAS  Google Scholar 

  49. S. Cho, Optical and Electrical Properties of CuO Thin Films Deposited at Several Growth Temperatures by Reactive RF Magnetron Sputtering. Met. Mater. Int. 19, 1327 (2013).

    Article  CAS  Google Scholar 

  50. D.M. Jundale, P.B. Joshi, S. Sen, and V.B. Patil, Nanocrystalline CuO Thin Films: Synthesis, Microstructural and Optoelectronic properTies. J. Mater. Sci.: Mater. Electron. 23, 1492 (2012).

    CAS  Google Scholar 

  51. Y. Shen, M. Guo, X. **a, and G. Shao, Role of Materials Chemistry on the electrical/electronic properties of CuO thin films. Acta Mater. 85, 122 (2015).

    Article  CAS  Google Scholar 

  52. S.M. Sze, Y. Li, and K.K. Ng, Physics of Semiconductor Devices, 4th ed., (Hoboken: Wiley, 2021).

    Google Scholar 

  53. D.A. Neamen, Semiconductor Physics and Devices Basic Principles, 3rd ed., (New York: McGraw-hill, 2003).

    Google Scholar 

  54. H.Z. Asl and S.M. Rozati, Spray Deposition of n-Type Cobalt-Doped CuO Thin Films: Influence of Cobalt Do** on Structural, Morphological, Electrical and Optical Properties. J. Electron. Mater. 49, 1534 (2020).

    Article  CAS  Google Scholar 

  55. S. Baturay, I. Candan, and C. Ozaydın, Structural, Optical and Electrical Characterizations of Cr-Doped CuO Thin Films. J. Mater. Sci. Mater. Electron. 33, 7275 (2022).

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Scientific Research Projects Coordination Unit of Dicle University for the support with the number FEN.18.007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şilan Baturay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 519 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baturay, Ş. Conversion from p- to n-Type Conductivity in CuO Thin Films Through Zr Do**. J. Electron. Mater. 51, 5644–5654 (2022). https://doi.org/10.1007/s11664-022-09836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09836-9

Keywords

Navigation