Log in

Optoelectronic Properties of MoS2/Graphene Heterostructures Prepared by Dry Transfer for Light-Induced Energy Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optoelectronic properties of atomic thin van der Waals heterostructures (vdWHs) comprising transition metal dichalcogenides that harvest light energy are of paramount interest. In this work, the effects of underlying single- and bilayer graphene (Gr) layers on structural and physical properties of MoS2/Gr vertical heterostructures, i.e., (1-2L)MoS2/(1-2L)Gr, with additional interfaces including MoS2 folds/edges [MoS2(1L+1L))/Gr(1L)] and MoS2(1-2L)/Au, are investigated to unravel the excitonic properties. By employing correlative scanning probe microscopy combined with micro-spectroscopy, we observed multiple effects related to excitons (i.e., redshift of neutral excitons, ratio of charged excitons or trions to neutral exciton population, and long-tailed trions) and surface electronic properties (i.e., reduced work function suggesting electron transfer) in addition to significantly enhanced near-field Raman spectra, apparent n-p type current rectification behavior and increase in photogenerated carriers. All of these findings are attributed to interlayer electronic interactions while minimizing Fermi level pinning at the MoS2/Au interface, commonly observed in 2D semiconductor−3D metal junctions, which deepens our understanding of dissimilar 2D material junctions. Integrating MoS2 with an optimal number of graphene layers as a 'nanospacer' signifies substrate engineering that is versatile for key optoelectronic and photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data that support the findings of this study are included within the article and supplementary file.

References

  1. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A Roadmap for Graphene. Nature 490, 192 (2012).

    Article  CAS  Google Scholar 

  2. S. Gupta, E. Heintzman, and J. Jasinski, Multiphonon Raman Spectroscopy Properties and Raman Map** of 2D van der Waals Solids: Graphene and Beyond. J. Raman Spectrosc. 46, 217 (2015).

    Article  CAS  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically Thin: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  4. Q.H. Wang, K.Z. Kalamtar, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  5. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan, Tightly Bound Trions in Monolayer MoS2. Nat. Mater. 12, 207 (2013).

    Article  CAS  Google Scholar 

  6. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, and M.C. Hersam, Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 8, 1102 (2014).

    Article  CAS  Google Scholar 

  7. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, and C.R. Dean, One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 342, 614 (2013).

    Article  CAS  Google Scholar 

  8. F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, and M. Polini, Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nat. Nanotechnol. 9, 780 (2014).

    Article  CAS  Google Scholar 

  9. K. Jo, P. Kumar, J. Orr, S.B. Anantharaman, J. Miao, M.J. Motala, A. Bandyopadhyay, K. Kisslinger, C. Muratore, V.B. Shenoy, E.A. Stach, N.R. Glavin, and D. Jariwala, Direct Optoelectronic Imaging of 2D Semiconductor–3D Metal Buried Interfaces. ACS Nano 15, 5618 (2021).

    Article  CAS  Google Scholar 

  10. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro Neto, 2D Materials and van der Waals Heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  11. X. Wang, and R. Long, Photoinduced Anomalous Electron Transfer Dynamics at a Lateral MoS2–Graphene Covalent Junction. J. Phys. Chem. Lett. 12, 7553 (2021).

    Article  CAS  Google Scholar 

  12. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, and E. Kaxiras, Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 556, 43 (2018).

    Article  CAS  Google Scholar 

  13. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mischenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, and L. Ponomarenko, Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 335, 947 (2012).

    Article  CAS  Google Scholar 

  14. Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei, Z. Lin, X.L. Zou, G.L. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan, Vertical and In-plane Heterostructures from WS2/MoS2 Monolayers. Nat. Mater. 13, 1135 (2014).

    Article  CAS  Google Scholar 

  15. S. Gupta, T. Robinson, and N. Dimakis, Electrochemically Desulfurized Molybdenum Disulfide (MoS2) and Reduced Graphene Oxide Aerogel Composites as Efficient Electrocatalysts for Hydrogen Evolution. J. Nanosci. Nanotechnol. 20, 6191 (2020). (and references therein).

    Article  CAS  Google Scholar 

  16. M. Yankowitz, J. Xue, D. Cormode, J.D.S. Yamagishi, K. Watanabe, T. Taniguchi, P.J. Herrero, P. Jacquod, and B.J. LeRoy, Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride. Nat. Phys. 8, 382 (2012).

    Article  CAS  Google Scholar 

  17. C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, and P. Kim, Hofstadter’s Butterfly and the Fractal Quantum Hall Effect in Moiré Superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  18. K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene–MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 8, 826 (2013).

    Article  CAS  Google Scholar 

  19. E. Malic, T. Winzer, F. Wendler, S. Brem, R. Jago, A. Knorr, M. Mittendorff, J.C. Konig-Otto, T. Plotzing, D. Neumaier et al., Carrier Dynamics in Graphene: Ultrafast Many-Particle Phenomena. Ann. Phys. 529, 1700038 (2017).

    Article  CAS  Google Scholar 

  20. R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Perez De Lara, P. Jarillo-Herrero, R.V. Gorbachev, and A. Castellanos-Gomez, Recent Progress in the Assembly of Nanodevices and van der Waals Heterostructures by Deterministic Placement of 2D Materials. Chem. Soc. Rev. 47, 53 (2018).

    Article  CAS  Google Scholar 

  21. J. He, N. Kumar, M.Z. Bellus, H.Y. Chiu, D. He, Y. Wang, and H. Zhao, Electron Transfer and Coupling in Graphene–Tungsten Disulfide van der Waals Heterostructures. Nat. Commun. 5, 5622 (2014).

    Article  CAS  Google Scholar 

  22. S. Aeschlimann, A. Rossi, M. Chavez-Cervantes, R. Krause, B. Arnoldi, B. Stadtmuller, M. Aeschlimann, S. Forti, F. Fabbri, and C. Coletti, Direct Evidence for Efficient Ultrafast Charge Separation in Epitaxial WS2/Graphene Heterostructures. Sci. Adv. 6, eaay0761 (2020).

    Article  CAS  Google Scholar 

  23. J. He, D. He, Y. Wang, and H. Zhao, Probing Effect of Electric Field on Photocarrier Transfer in Graphene-WS2 van der Waals Heterostructures. Opt. Express 25, 1949 (2017).

    Article  CAS  Google Scholar 

  24. H.C. Diaz, J. Avila, C. Chen, R. Addou, M.C. Asensio, and M. Batzill, Direct Observation of Interlayer Hybridization and Dirac Relativistic Carriers in Graphene/MoS2 van der Waals Heterostructures. Nano Lett. 15, 1135 (2015).

    Article  CAS  Google Scholar 

  25. S. Gao, Z. Wang, H. Wang, F. Meng, P. Wang, S. Chen, Y. Zeng, J. Zhao, H. Hu, R. Cao, Z. Xu, Z. Guo, and H. Zhang, Graphene/MoS2/Graphene Vertical Heterostructure-Based Broadband Photodetector with High Performance. Adv. Mater. Interf. 8, 2001730 (2021).

    Article  CAS  Google Scholar 

  26. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, and K.S. Novoselov, Vertical Field-Effect Transistor Based on Graphene–WS2 Heterostructures for Flexible and Transparent Electronics. Nat. Nanotechnol. 8, 100–103 (2012).

    Article  CAS  Google Scholar 

  27. M. Massicotte, P. Schmidt, F. Vialla, K.G. Schadler, A.R. Plantey, K. Waranabe, T. Taniguchi, K.J. Tielrooji, and F.H.L. Koppens, Picosecond Photoresponse in van der Waals Heterostructures. Nat. Nanotechnol. 11, 42 (2015).

    Article  CAS  Google Scholar 

  28. F. Withers, P.Z. Del, A. Mischencko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, and K.S. Novoselov, Light-Emitting Diodes by Band-Structure Engineering in van der Waals Heterostructures. Nat. Mater. 14, 301 (2015).

    Article  CAS  Google Scholar 

  29. G.W. Shim, K. Yoo, S.B. Seo, J. Shin, D.Y. Jung, I.-S. Kang, C.W. Ahn, B.J. Cho, and S.-Y. Choi, Large-Area Single-Layer MoSe2 and Its van der Waals Heterostructures. ACS Nano 8, 6655 (2014).

    Article  CAS  Google Scholar 

  30. S. Subramanian, K. Xu, Y. Wang, S. Moser, N.A. Simonson, D. Deng, and V.H. Crespi, Tuning Transport Across MoS2/Graphene Interfaces via As-Grown Lateral Heterostructures. NPJ D Mater. Appl. 4, 9 (2020).

    Article  CAS  Google Scholar 

  31. M. Velický, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion, W.J.I. DeBenedetti, G.C. Correa, Y. Han, A.J. Wain, M.A. Hines, D.A. Muller, K.S. Novoselov, H.D. Abruña, R.M. Bowman, E.J.G. Santos, and F. Huang, Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 12, 10463 (2018).

    Article  CAS  Google Scholar 

  32. S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick, M. Tosun, Y. Zhou, M. Dubey, J.W. Ager III., D. Chrzan, and A. Javey, Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv. Mater. 28, 4053 (2016).

    Article  CAS  Google Scholar 

  33. L. **e, L. Du, X. Lu, R. Yang, D. Shi, and G. Zhang, A Facile and Efficient Dry Transfer Technique for Two-Dimensional Van derWaals Heterostructure. Chin. Phys. B 26, 1 (2017).

    Google Scholar 

  34. L. Wang, I. Meric, P. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. Campos, and D. Muller, One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 342, 614 (2013).

    Article  CAS  Google Scholar 

  35. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat, From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 22, 1385 (2012).

    Article  CAS  Google Scholar 

  36. G.L. Frey, R. Tenne, M.J. Matthiews, M.S. Dresselhaus, and G. Dresselhaus, Raman and resonance Raman investigation of MoS2 Nanoparticles. Phys. Rev. B 60, 2883 (1999).

    Article  CAS  Google Scholar 

  37. M. Dieterle, G. Weinberg, and G. Mestl, Raman Spectroscopy of Molybdenum Oxides Part I. Structural Characterization of Oxygen Defects in MoO3−x by DR UV/VIS. Raman Spectroscopy and X-ray Diffraction. Phys. Chem. Chem. Phys. 4, 812 (2002).

    Article  CAS  Google Scholar 

  38. Z. Wang and Y. Zhang, Tuning the Structure of MoO3 Nanoplates via MoS2 Oxidation. Phil. Mag. Lett. 96, 347 (2016).

    Article  CAS  Google Scholar 

  39. B.C. Windom, W.G. Sawyer, and D.W. Hahn, A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems. Tribol. Lett. 42, 301 (2011).

    Article  CAS  Google Scholar 

  40. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  41. L. Zhang, H. Yan, X. Sun, M. Dong, T. Yildrim, B. Wang, B. Wen, G.P. Neupane, A. Sharma, Y. Zhu, J. Zhang, K. Liang, B. Liu, H.T. Nguyen, D. Macdonald, and Y. Lu, Modulated Interlayer Charge Transfer Dynamics in a Monolayer TMD/Metal Junction. Nanoscale 11, 418 (2019).

    Article  CAS  Google Scholar 

  42. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271 (2010).

    Article  CAS  Google Scholar 

  43. M. Buscema, G.A. Steele, H.S.J. van der Zant, and A.C. Gomez, The Effect of the Substrate on the Raman and Photoluminescence Emission of Single-Layer MoS2. Nano Res. 7, 561 (2014).

    Article  CAS  Google Scholar 

  44. U. Bhanu, M.R. Islam, L. Tetard, and S.I. Khondaker, Photoluminescence Quenching in gold - MoS2 Hybrid Nanoflakes. Sci. Rep. 4, 5575 (2015).

    Article  CAS  Google Scholar 

  45. V. Huard, R.T. Cox, K. Saminadayar, A. Arnoult, and S. Tatarenko, Bound States in Optical Absorption of Semiconductor Quantum Wells Containing a Two-Dimensional Electron Gas. Phys. Rev. Lett. 84, 187 (2000).

    Article  CAS  Google Scholar 

  46. N. Dimakis, O. Vadodaria, K. Ruiz, and S. Gupta, Molybdenum Disulfide Monolayer Electronic Structure Information as Explored Using Density Functional Theory and Quantum Theory of Atoms in Molecules. Appl. Surf. Sci. 555, 149545 (2021).

    Article  CAS  Google Scholar 

  47. T. Cheiwchanchamnangij and W.R.L. Lambrecht, Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2. Phys. Rev. B 85, 205302 (2012).

    Article  CAS  Google Scholar 

  48. A. Ramasubramaniam, Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    Article  CAS  Google Scholar 

  49. C.E. Giusca, I. Rungger, V. Panchal, C. Melios, Z. Lin, Y.-C. Lin, E. Kahn, A.L. Elías, J.A. Robinson, M. Terrones, and O. Kazakova, Excitonic Effects in Tungsten Disulfide Monolayers on Two-Layer Graphene. ACS Nano 10, 7840 (2016).

    Article  CAS  Google Scholar 

  50. T. Vincent, J. Liang, S. Singh, E. G. Castanon, X. Zhang, A. McCreary, D. Jariwala, O. Kazakova, and Z. Y. Al Balushi, Opportunities in Electrically Tunable 2D Materials Beyond Graphene: Recent Progress and Future Outlook. ar**v:2103.14194v1 March, 2021.

  51. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, and G. Aivazian, Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor. Nat. Comm. 4, 1474 (2013).

    Article  CAS  Google Scholar 

  52. R.C.T. da Costa, Quantum Mechanics of a Constrained Particle. Phys. Rev. A 23, 1982 (1981).

    Article  Google Scholar 

  53. M. Ikegami and Y. Nagaoka, Quantum Mechanics of an Electron on a Curved Interface. Prog. Theor. Phys. 106, 235 (1991).

    Article  Google Scholar 

  54. S. Gupta and A. Saxena, A Topological Twist on Materials Science. Mater. Res. Bull. 39, 265 (2014).

    Article  CAS  Google Scholar 

  55. M. Yang, M.S. Mattei, C.R. Cherqui, X. Chen, R.P. vanDuyne, and G.C. Schatz, Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Nano Lett. 19, 7309 (2019).

    Article  CAS  Google Scholar 

  56. D.V. Voronine, G. Lu, D. Zhu, and A. Krayev, Tip-Enhanced Ramanscattering of MoS2. IEEE J. Sel. Top. Quantum Electron. 23, 4600506 (2016).

    Google Scholar 

  57. T.D. Gaudig, A. Taguchi, S. Katawa, and V. Deckert, Tip-Enhanced Raman Spectroscopy–from Early Developments to Recent Advances. Chem. Soc. Rev. 46, 4077 (2017).

    Article  Google Scholar 

  58. S.M. Sze, in Semiconductor devices, physics and technology. [668-669] (Wiley, New Jersey, 2007).

  59. M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, and P. Barbara, Electron-Hole Transport and Photovoltaic Effect in Gated MoS2 Schottky Junctions. Sci. Rep. 3, 1634 (2013).

    Article  CAS  Google Scholar 

  60. F. Gong, H. Fang, P. Wang, M. Su, Q. Li, J.C. Ho, X. Chen, W. Lu, L. Liao, J. Wang, and W. Hu, Visible to Near-Infrared Photodetectors Based on MoS2 Vertical Schottky Junctions. Nanotechnology 28, 484002 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation (NSF) under Grant Nos. 1728309 and 1920050 (MRI).

Author information

Authors and Affiliations

Authors

Contributions

The authors (S.G. and A.J.) contributed equally to this work. The manuscript was written through contribution of corresponding author (S.G.). All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Sanju Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 538 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Johnston, A. & Khondaker, S. Optoelectronic Properties of MoS2/Graphene Heterostructures Prepared by Dry Transfer for Light-Induced Energy Applications. J. Electron. Mater. 51, 4257–4269 (2022). https://doi.org/10.1007/s11664-022-09672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09672-x

Keywords

Navigation