Log in

A Review on the Recent Advancements in Tin Oxide-Based Thin-Film Transistors for Large-Area Electronics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Amorphous oxide semiconductors have gained significant attention in the past few decades and have emerged as a promising material for thin-film transistors (TFTs) because they offer high carrier mobility (> 10–50 cm2/V s) and uniformity. In particular, amorphous indium-gallium-zinc-oxide (a-IGZO) has been widely employed as an active channel material in TFTs owing to its high mobility. However, indium-based TFTs suffer from stability problems under positive, negative, and illumination bias stress conditions, which limits their applications in flat-panel displays. Moreover, the limited supply of indium and growing demand for high-stability TFTs with better electrical performance has led to the introduction of tin oxide as a promising solution to replace indium in TFTs. This review provides an overview on the progress and recent developments in indium-free tin oxide-based TFTs for large-area electronics, with special emphasis on the sputtering technique. In addition, the source of the dual conductivity of tin oxide is addressed, which will be helpful in designing complementary metal oxide semiconductor devices. The instability problems and approaches to improve the electrical performance of tin oxide TFTs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Jeong, Semicond. Sci. Technol. 26, 034008 (2011).

    Google Scholar 

  2. J. Sheng, H.J. Jeong, K.L. Han, T.H. Hong, and J.S. Park, J. Inf. Disp. 18, 159 (2017).

    CAS  Google Scholar 

  3. N. Matsuo, A. Heya, and H. Hamada, ECS J. Solid State Sci. Technol. 8, 239 (2019).

    Google Scholar 

  4. A.J. Flewitt, Handbook of Visual Display Technology, ed. J. Chen, W. Cranton, and M. Fihn (Berlin: Springer, 2012), pp. 628–646. https://doi.org/10.1007/978-3-319-14346-0_47

    Chapter  Google Scholar 

  5. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).

    CAS  Google Scholar 

  6. Y.H. Zhang, Z.X. Mei, H.L. Liang, and X.L. Du, Chin. Phys. B 26, 047307 (2017).

    Google Scholar 

  7. L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, C. Giuseppe, F. Bottacchi, T.D. Anthopoulos, and G. Tröster, Appl. Phys. Rev. 3, 021303 (2016).

    Google Scholar 

  8. T. Kamiya, K. Nomura, K. Ide, J. Kim, and H. Hiramatsu, H. Kumomi and H. Hosono.Novel Structured Metallic and Inorganic Materials, ed. Y. Setsuhara, T. Kamiya, and S. Yamaura (Singapore: Springer, 2019), pp. 573–587.

    Google Scholar 

  9. T. Kamiya and H. Hosono, NPG Asia Mater. 2, 15 (2010).

    Google Scholar 

  10. J.E. Medvedeva, D.B. Buchholz, and R.P.H. Chang, Adv. Electron. Mater. 3, 1700082 (2017).

    Google Scholar 

  11. H. Hosono, Handbook of Visual Display Technology, ed. J. Chen, W. Cranton, and M. Fihn (Berlin: Springer, 2012), pp. 730–749.

    Google Scholar 

  12. Semiconductor and Electronics Market Research News, https://whatech.com. Accessed 21 Apr 2020.

  13. H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non Cryst. Solids 198–200, 165 (1996).

    Google Scholar 

  14. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).

    CAS  Google Scholar 

  15. Indium market: Global demand analysis and opportunity outlook 2024/442 https://www.researchnester.com/reports. Accessed 21 Apr 2020.

  16. S. Aikawa, P. Darmawan, K. Yanagisawa, T. Nabatame, Y. Abe, and K. Tsukagoshi, Appl. Phys. Lett. 102, 102101 (2013).

    Google Scholar 

  17. T. Matsuda, M. Uenuma, and M. Kimura, Jpn. J. Appl. Phys. 56, 070309 (2017).

    Google Scholar 

  18. T. Matsuda, K. Umeda, Y. Kato, D. Nishimoto, M. Furuta, and M. Kimura, Sci. Rep. 7, 44326 (2017).

    CAS  Google Scholar 

  19. Daily Metal Price: Free Metal Price Tables and Charts. https://www.dailymetalprice.com, Accessed 21 Apr 2020.

  20. Ç. Kılıç and A. Zunger, Phys. Rev. Lett. 88, 095501 (2002).

    Google Scholar 

  21. J.A. Dean, Lange’s Handbook of Chemistry, 15th ed. (Cambridge: McGraw-Hill Inc, 1999), pp. 441–453.

    Google Scholar 

  22. H.A. Klasens and H. Koelmans, Philips Tech. Rev. 7, 701 (1964).

    CAS  Google Scholar 

  23. A. Aoki and H. Sasakura, Jpn. J. Appl. Phys. 9, 582 (1970).

    CAS  Google Scholar 

  24. M.W.J. Prins, K.O. Grosse-Holz, G. Müller, J.F.M. Cillessen, J.B. Giesbers, R.P. Weening, and R.M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).

    CAS  Google Scholar 

  25. J. Wöllenstein and M. Jägle, H. Böttner.Advanced Gas Sensing, ed. T. Doll (Boston: Springer, 2003), pp. 85–99.

    Google Scholar 

  26. R.E. Presley, C.L. Munsee, C.H. Park, D. Hong, J.F. Wager, and D.A. Keszler, J. Phys. D Appl. Phys. 37, 2810 (2004).

    CAS  Google Scholar 

  27. C.W. Ou, Z.Y.H. Dhananjay, Y.C. Chuang, S.S. Cheng, M.C. Wu, K.C. Ho, and C.W. Chu, Appl. Phys. Lett. 92, 122113 (2008).

    Google Scholar 

  28. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, and H. Hosono, Phys. Status Solidi A 206, 2187 (2009).

    CAS  Google Scholar 

  29. K. Nomura, T. Kamiya, and H. Hosono, Adv. Mater. 23, 3431 (2011).

    CAS  Google Scholar 

  30. F.A. Akgul, C. Gumus, A.O. Er, A.H. Farha, G. Akgul, Y. Ufuktepe, and Z. Liu, J. Alloys Compd. 579, 50 (2013).

    CAS  Google Scholar 

  31. K. Henkel, J. Haeberle, K. Müller, C. Janowitz, and D. Schmeißer, Single Crystals of Electronic Materials Growth and Properties, ed. R. Fornari (Amsterdam: Elsevier, 2019), pp. 547–572.

    Google Scholar 

  32. J. Geurts, S. Rau, W. Richter, and F.J. Schmitte, Thin Solid Films 121, 217 (1984).

    CAS  Google Scholar 

  33. G.B. González, Materials 5, 818 (2012).

    Google Scholar 

  34. K.J. Saji and A.P.R. Mary, ECS J. Solid State Sci. Technol. 4, Q101 (2015).

    CAS  Google Scholar 

  35. S. Das and V. Jayaraman, Prog. Mater Sci. 66, 112 (2014).

    CAS  Google Scholar 

  36. M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    CAS  Google Scholar 

  37. A.M. Ganose and D.O. Scanlon, J. Mater. Chem. C 4, 1467 (2016).

    CAS  Google Scholar 

  38. H. Hosono, SID Symp. Dig. Tech. Pap. 38, 1830 (2007).

    CAS  Google Scholar 

  39. Y.J. Han, Y.J. Choi, C.Y. Jeong, D. Lee, S.H. Song, and H.I. Kwon, IEEE Electron Device Lett. 36, 466 (2015).

    CAS  Google Scholar 

  40. P.J. Chen and H.T. Jeng, Sci. Rep. 5, 16359 (2015).

    CAS  Google Scholar 

  41. P.C. Hsu, W.C. Chen, Y.T. Tsai, Y.C. Kung, C.H. Chang, C.J. Hsu, C.C. Wu, and H.H. Hsieh, Jpn. J. Appl. Phys. 52, 05DC071 (2013).

    Google Scholar 

  42. J. Zhang, X. Kong, J. Yang, Y. Li, J. Wilson, J. Liu, Q. **n, Q. Wang, and A. Song, Appl. Phys. Lett. 108, 263503 (2016).

    Google Scholar 

  43. R. Barros, K.J. Saji, J.C. Waerenborgh, P. Barquinha, L. Pereira, E. Carlos, R. Martins, and E. Fortunato, Nanomaterials 9, 320 (2019).

    CAS  Google Scholar 

  44. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.H.K. Park, C.S. Hwang, and R. Martins, Appl. Phys. Lett. 97, 052105 (2010).

    Google Scholar 

  45. A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, Phys. Rev. B 74, 195128 (2006).

    Google Scholar 

  46. D. Gupta, M. Katiyar, and D. Gupta, Proc. ASID 6, 425 (2006).

    Google Scholar 

  47. J.S. Park, W.J. Maeng, H.S. Kim, and J.S. Park, Thin Solid Films 520, 1679 (2012).

    CAS  Google Scholar 

  48. J. Troughton and D. Atkinson, J. Mater. Chem. C 7, 12388 (2019).

    CAS  Google Scholar 

  49. H.H. Hsieh, H.H. Lu, H.C. Ting, C.S. Chuang, C.Y. Chen, and Y. Lin, J. Inf. Disp. 11, 160 (2010).

    Google Scholar 

  50. W.S. Kim, Y.K. Moon, K.T. Kim, S.Y. Shin, and J.W. Park, Thin Solid Films 520, 2220 (2012).

    CAS  Google Scholar 

  51. K. Ide, K. Nomura, H. Hosono, and T. Kamiya, Phys. Status Solidi A 216, 1800372 (2019).

    Google Scholar 

  52. J.S. Park, Inf. Disp. 29, 16 (2013).

    Google Scholar 

  53. H. Kim, and B.D. Chin, IEEE Photonic Technol. Lett. 27, 4 (2013).

    Google Scholar 

  54. Z.W. Shang, H.H. Hsu, Z.W. Zheng, and C.H. Cheng, Nanotechnol. Rev. 8, 422 (2019).

    CAS  Google Scholar 

  55. J.H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett. 93, 213505 (2008).

    Google Scholar 

  56. C.W. Dhananjay, C.W. Chu, M.C. Ou, Z.Y. Wu, K.C. Ho, and S.W. Lee, Appl. Phys. Lett. 92, 232103 (2008).

    Google Scholar 

  57. Y. Li, J. Yang, Y. Qu, J. Zhang, L. Zhou, Z. Yang, Z. Lin, Q. Wang, A. Song, and Q. **n, Appl. Phys. Lett. 112, 182102 (2018).

    Google Scholar 

  58. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 97, 072111 (2010).

    Google Scholar 

  59. P.K. Nayak, J.A. Caraveo-Frescas, Z. Wang, M.N. Hedhili, Q.X. Wang, and H.N. Alshareef, Sci. Rep. 4, 4672 (2014).

    Google Scholar 

  60. Y. Qu, J. Yang, Y. Li, J. Zhang, Q. Wang, A. Song, and Q. **n, Semicond. Sci. Technol. 33, 075001 (2018).

    Google Scholar 

  61. Y.J. Han, Y.J. Choi, I. Cho, S.H. **, J. Lee, and H. Kwon, IEEE Electron Device Lett. 35, 1260 (2014).

    CAS  Google Scholar 

  62. J.A. Caraveo-Frescas, P.K. Nayak, H.A. Al-Jawhari, D.B. Granato, U. Schwingenschlögl, and H.N. Alshareef, ACS Nano 7, 5160 (2013).

    CAS  Google Scholar 

  63. C.W. Shih, A. Chin, C. Lu, and S.H. Yi, in IEEE International Electron Devices Meeting (IEDM), pp. 6.6.1–6.6.4 (2015)

  64. Y. Li, Q. **n, L. Du, Y. Qu, H. Li, X. Kong, Q. Wang, and A. Song, Sci. Rep. 6, 36183 (2016).

    CAS  Google Scholar 

  65. D.M. Priyadarshini, R. Mannam, M.S.R. Rao, and N. DasGupta, Appl. Surf. Sci. 418, 414 (2017).

    Google Scholar 

  66. S.H. Kim, I.H. Baek, D.H. Kim, J.J. Pyeon, T.M. Chung, S.H. Baek, J.S. Kim, J.H. Han, and S.K. Kim, J. Mater. Chem. C 5, 3139 (2017).

    CAS  Google Scholar 

  67. S. Parthiban and J.Y. Kwon, J. Mater. Res. 29, 1585 (2014).

    CAS  Google Scholar 

  68. S.H. Lee, K. Kwon, K. Kim, J.S. Yoon, D.S. Choi, Y. Yoo, C. Kim, S. Kang, and J.H. Kim, Materials (Basel) 12, 137 (2019).

    CAS  Google Scholar 

  69. P. Chen, Y. Chiu, G. Liou, Z. Zheng, C. Cheng, and Y. Wu, IEEE Electron Device Lett. 38, 210 (2017).

    CAS  Google Scholar 

  70. H.P. Pham, T.G. Le Thuy, Q.T. Tran, Q.T. Nguyen, H.T. My Hoa, H.T. Thu, and T.V. Cuong, J. Nanomater. 2017, 8360823 (2017).

    Google Scholar 

  71. A.H. Nguyen, M. Nguyen, H. Ji, J. Cheon, K. Yu, J. Kim, S. Kim, S. Cho, R. Choi, H.P. Pham, and Q.T. Tran, J. Vac. Sci. Technol., B 36, 062203 (2018).

    Google Scholar 

  72. X. Liu, W. Wu, W. Chen, H. Ning, X. Zhang, W. Yuan, M. **ong, X. Wang, R. Yao, and J. Peng, Materials (Basel) 11, 1440 (2018).

    Google Scholar 

  73. X. Liu, W. Cai, J. Chen, Z. Fang, H. Ning, S. Hu, R. Tao, Y. Zeng, Z. Zheng, R. Yao, M. Xu, L. Wang, L. Lan, and J. Peng, J. Phys. D Appl. Phys. 49, 505102 (2016).

    Google Scholar 

  74. H. Ning, X. Liu, H. Zhang, Z. Fang, W. Cai, J. Chen, R. Yao, M. Xu, L. Wang, L. Lan, J. Peng, X. Wang, and Z. Zhang, Materials (Basel) 10, 24 (2017).

    Google Scholar 

  75. J. Yang, J. Ren, D. Lin, Y. Han, M. Qu, S. Pi, R. Fu, and Q. Zhang, J. Phys. D Appl. Phys. 50, 355103 (2017).

    Google Scholar 

  76. J. Ren, K. Li, J. Yang, D. Lin, H. Kang, J. Shao, R. Fu, and Q. Zhang, Sci. China Mater. 62, 803 (2019).

    CAS  Google Scholar 

  77. Z. Wang, J. Zheng, M. Li, Q. Wu, B. Huang, C. Chen, J. Wu, and C. Liu, Appl. Phys. Lett. 113, 122101 (2018).

    Google Scholar 

  78. R. Takagi, K. Umeda, M. Kimura, and T. Matsuda, in IEEE International Meeting for Future of Electron Devices (IMFEDK), pp. 68–69 (2017)

  79. D.S. Han, J.H. Park, Y.J. Kang, and J.W. Park, Microelectron. Reliab. 53, 1875 (2013).

    CAS  Google Scholar 

  80. J. Sun, A. Lu, L. Wang, Y. Hu, and Q. Wan, Nanotechnology 20, 335204 (2009).

    Google Scholar 

  81. A.G. Sabnis and L.D. Feisel, J. Vac. Sci. Technol. 14, 685 (1977).

    CAS  Google Scholar 

  82. D. Han, J. Park, M. Kang, H. Jeon, and J. Park, J. Nanosci. Nanotechnol. 15, 7606 (2015).

    CAS  Google Scholar 

  83. J. Yang, T. Meng, Z. Yang, C. Cui, and Q. Zhang, J. Phys. D Appl. Phys. 48, 435108 (2015).

    Google Scholar 

  84. J. Yang, S. Pi, Y. Han, R. Fu, T. Meng, and Q. Zhang, IEEE Trans. Electron Devices 63, 1904 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parthiban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenifer, K., Arulkumar, S., Parthiban, S. et al. A Review on the Recent Advancements in Tin Oxide-Based Thin-Film Transistors for Large-Area Electronics. J. Electron. Mater. 49, 7098–7111 (2020). https://doi.org/10.1007/s11664-020-08531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08531-x

Keywords

Navigation