Log in

Optical Absorption and NIR Photoluminescence of Nd3+-Activated Strontium Phosphate Glasses

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Strontium phosphate glasses with various concentrations of Nd2O3 have been prepared by melt quenching method. Absorption and photoluminescence spectra and lifetime measurements have been carried out to obtain the optical properties of these glasses. From the absorption spectrum, intensity and radiative parameters have been evaluated using Judd–Ofelt analysis. Near-infrared photoluminescence spectra consist of three bands centered at 875 nm, 1056 nm and 1327 nm, among which the highest intensity has been noticed for the band at 1056 nm that corresponds to the 4F3/2 → 4F11/2 transition of Nd3+ ion. Laser parameters such as branching ratio, band width, stimulated emission cross section and gain bandwidth for the 4F3/2 → 4F11/2 transition are found to be 0.52, 28 nm, 2.31 × 10−20 cm2 and 6.5 × 10−26 cm3, respectively. Decay curves of the 4F3/2 level of Nd3+ ions exhibit a single exponential nature at lower concentrations, while they become non-exponential at higher concentrations (≥ 0.1 mol.%) due to non-radiative energy transfer processes. This feature is also associated with shortening of lifetime from 307 μs to 82 μs when the Nd3+ ion concentration increases from 0.1 mol.% to 4.0 mol.%. The results have been compared with those of barium and magnesium phosphate glasses and commercial glasses. The results suggest that these glasses have potential applications as infrared laser materials at 1.05 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, and F.H. Abd El-Kader, J. Electron. Mater. 49, 826 (2020).

    CAS  Google Scholar 

  2. S. Gopi, P. Remya Mohan, E. Sreeja, N.V. Unnikrishnan, C. Joseph, and P.R. Biju, J. Electron. Mater. 48, 4300 (2019).

    CAS  Google Scholar 

  3. D. Van Hau, D.T.T. Nhan, N. Van Duc, V.P. Tuyen, T.-D. Nguyen, T. Thai Hoa, and N. Duc Cuong, J. Electron. Mater. 48, 329 (2019).

    Google Scholar 

  4. M.M. Ismail, I.K. Batisha, L. Zur, A. Chiasera, M. Ferrari, and A. Lukowiak, Opt. Mater. 99, 109591 (2020).

    CAS  Google Scholar 

  5. M. Soharab, I. Bhaumik, R. Bhatt, A. Saxena, S. Khan, and A.K. Karnal, Opt. Mater. 92, 379 (2019).

    CAS  Google Scholar 

  6. C. Danson, D. Hillier, N. Hopps, and D. Neely, High Power Laser Sci. Eng. 3, e3 (2015).

    Google Scholar 

  7. V. Bagnoud and F. Wagner, High Power Laser Sci. Eng. 4, e39 (2016).

    Google Scholar 

  8. A.A. Kuzmin, E.A. Khazanov, and A.A. Shaykin, Opt. Express 19, 14223 (2011).

    CAS  Google Scholar 

  9. D.F. de Sousa, L.A.O. Nunes, J.H. Rohling, and M.L. Baesso, Appl. Phys. B Lasers Opt. 77, 59 (2003).

    Google Scholar 

  10. L. Hu, D. He, H. Chen, X. Wang, T. Meng, L. Wen, J. Hu, Y. Xu, S. Li, Y. Chen, W. Chen, S. Chen, J. Tang, and B. Wang, Opt. Mater. 63, 213 (2017).

    CAS  Google Scholar 

  11. G.R. Hays, E.W. Gaul, M.D. Martinez, and T. Ditmire, Appl. Opt. 46, 4813 (2007).

    Google Scholar 

  12. J.P. Zou, C. Le Blanc, D.N. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, L. Lecherbourg, A. Pellegrina, P. Ramirez, F. Giambruno, A. Fréneaux, F. Leconte, D. Badarau, J.M. Boudenne, D. Fournet, T. Valloton, J.L. Paillard, J.L. Veray, M. Pina, P. Monot, J.P. Chambaret, P. Martin, F. Mathieu, P. Audebert, and F. Amiranoff, High Power Laser Sci. Eng. 3, e2 (2015).

    Google Scholar 

  13. S. Surendra Babu, R. Rajeswari, K. Jang, E.J. Cho, K.H. Jang, H.J. Seo, and C.K. Jayasankar, J. Lumin. 130, 1021 (2010).

    CAS  Google Scholar 

  14. C. Tian, X. Chen, and Y. Shuibao, Solid State Sci. 48, 171 (2015).

    CAS  Google Scholar 

  15. R.O. Omrani, S. Krimi, J.J. Videau, I. Khattech, A. El Jazouli, and M. Jemal, J. Non Cryst. Solids 390, 5 (2014).

    CAS  Google Scholar 

  16. A. Jha, B. Richards, G. Jose, T.T. Fernandez, P. Joshi, X. Jiang, and J. Lousteau, Prog. Mater Sci. 57, 1426 (2012).

    CAS  Google Scholar 

  17. W. Vogel, Glass Chemistry (Berlin: Springer, 1994).

    Google Scholar 

  18. P. Ravi, N. Vijaya, and N. Krishna Mohan, Int. J. Sci. Res. Phys. Appl. Sci. 6, 45 (2018).

    Google Scholar 

  19. R.N.A. Prasad, R. Praveena, N. Vijaya, P. Babu, and N. KrishnaMo han, Mater. Res. Express 6, 096204 (2019).

    CAS  Google Scholar 

  20. C.K. Jorgensen, Orbitals in Atoms and Molecules (London: Academic Press, 1962).

    Google Scholar 

  21. S.P. Sinha, Complexes of the Rare Earths (Oxford: Pergamon, 1966).

    Google Scholar 

  22. W.T. Carnall, P.R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).

    CAS  Google Scholar 

  23. E. Rukmini and C.K. Jayasankar, Phys. B 212, 167 (1995).

    CAS  Google Scholar 

  24. R. Praveena, R. Vijaya, and C.K. Jayasankar, Spectrochim. Acta A 70, 577 (2008).

    CAS  Google Scholar 

  25. B.R. Judd, Phys. Rev. 127, 750 (1962).

    CAS  Google Scholar 

  26. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    CAS  Google Scholar 

  27. K. Upendra Kumar, P. Babu, K.H. Jang, H.J. Seo, C.K. Jayasankar, and A.S. Joshi, J. Alloys Compd. 458, 509 (2008).

    Google Scholar 

  28. R. Vijaya, V. Venkatramu, P. Babu, L. Rama Moorthy, and C.K. Jayasankar, Mater. Chem. Phys. 117, 131 (2009).

    CAS  Google Scholar 

  29. Z. Mazurak, M. Czaja, R. Lisiecki, and A. Meijerink, J. Mater. Sci. Eng. Adv. Technol. 5, 1 (2012).

    Google Scholar 

  30. D.V.R. Murthy, T. Sasikala, B.C. Jamalaiah, A.M. Babu, J.S. Kumar, M. Jayasimhadri, and L.R. Moorthy, Opt. Commun. 284, 603 (2011).

    CAS  Google Scholar 

  31. J.H. Campbell and T.I. Suratwala, J. Non Cryst. Solids 263, 318 (2000).

    Google Scholar 

  32. C.K. Jorgensen and R. Reisfeld, J. Less Common Met. 93, 107 (1983).

    Google Scholar 

  33. N. Chanthima, Y. Tariwong, T. Sareein, J. Kaewkhao, and N.W. Sangwaranatee, Appl. Mech. Mater. 879, 27 (2018).

    Google Scholar 

  34. E.W.J.L. Omen and A.M.A. Van Dungeon, J. Non Cryst. Solids 111, 205 (1989).

    Google Scholar 

  35. N. Deopa, A.S. Rao, M. Gupta, and G. Vijaya Prakash, Opt. Mater. 75, 127 (2018).

    CAS  Google Scholar 

  36. M. Zambelli, A. Speghini, G. Ingletto, C. Locatelli, M. Bettinelli, F. Vetrone, J.C. Boyer, and J.A. Capobianco, Opt. Mater. 25, 215 (2004).

    CAS  Google Scholar 

  37. E. Pecoraro, J.A. Sampaio, L.A.O. Nunes, S. Gama, and M.L. Baesso, J. Non Cryst. Solids 277, 73 (2000).

    CAS  Google Scholar 

  38. J.H. Choi, A. Margaryan, A. Margaryan, and F.G. Shi, J. Lumin. 114, 167 (2005).

    CAS  Google Scholar 

  39. I. Pal, A. Agarwal, S. Sanghi, M.P. Aggarwal, and S. Bhardwaj, J. Alloys Compd. 587, 332 (2014).

    CAS  Google Scholar 

  40. T.F. Xue, L.Y. Zhang, J.J. Hu, M.S. Liao, and L.L. Hu, Opt. Mater. 47, 24 (2015).

    CAS  Google Scholar 

  41. A.D. Sontakke, K. Biswas, A.K. Mandal, and K. Annapurna, Appl. Phys. B 101, 235 (2010).

    CAS  Google Scholar 

  42. J. Azevedo, J. Coelho, G. Hungerford, and N. Sooraj Hussain, Phys. B 405, 4696 (2010).

    CAS  Google Scholar 

  43. I. Pal, A. Agarwal, S. Sanghi Sanjay, and M.P. Aggarwal, Indian J. Pure Appl. Phys. 51, 18 (2013).

    CAS  Google Scholar 

  44. B. Karthikeyan, R. Philip, and S. Mohan, Opt. Commun. 246, 153 (2005).

    CAS  Google Scholar 

  45. M. Sobczyk, J. Quant. Spectrosc. Rad. Transf. 119, 128 (2013).

    CAS  Google Scholar 

  46. S. Srihari Sastry and B.R. Venkateswara Rao, Indian J. Pure Appl. Phys. 52, 491 (2014).

    Google Scholar 

  47. G.A. Kumar, A. Martinez, and E.D.L. Rosa, J. Lumin. 99, 141 (2002).

    CAS  Google Scholar 

  48. G.A. Kumar, P.R. Biju, C. Venugopal, and N.V. Unnikrishnan, J. Non Cryst. Solids 221, 47 (1997).

    Google Scholar 

  49. K. Zou, H. Guo, M. Lu, W. Li, C. Hou, W. Wei, J. He, B. Peng, and B. **angli, Opt. Express 17, 10001 (2009).

    CAS  Google Scholar 

  50. B. Karthikeyan and S. Mohan, Mater. Res. Bull. 39, 1507 (2004).

    CAS  Google Scholar 

  51. K. Mariselvam, R. Arun Kumar, and P. Manasa, Inf. Phys. Technol. 91, 18 (2018).

    CAS  Google Scholar 

  52. K. Mariselvam, R. Arun Kumar, and K. Suresh, Physica B 534, 68 (2018).

    CAS  Google Scholar 

  53. D.D. Ramteke, R.E. Kroon, and H.C. Swart, J. Non Cryst. Solids 457, 157 (2017).

    CAS  Google Scholar 

  54. T. Fuji, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, J. Phys. Chem. B 101, 10631 (1997).

    Google Scholar 

  55. S. Shen, M. Naftaly, and A. Jha, Opt. Commun. 205, 101 (2002).

    CAS  Google Scholar 

  56. P. Babu, H.J. Seo, K.H. Jang, R. Balakrishnaiah, C.K. Jayasankar, K.S. Lim, and V. Lavin, J. Opt. Soc. Am. B 24, 2218 (2007).

    CAS  Google Scholar 

  57. P. Babu, H.J. Seo, K.H. Jang, R. Balakrishnaiah, C.K. Jayasankar, and A.S. Joshi, J. Phys. Condens. Matter 17, 4859 (2005).

    CAS  Google Scholar 

  58. R. Praveena, K.H. Jang, C.K. Jayasankar, and H.J. Seo, J. Alloys Compd. 496, 335 (2010).

    CAS  Google Scholar 

  59. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, J. Lumin. 94–95, 293 (2001).

    Google Scholar 

  60. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, Opt. Mater. 24, 103 (2003).

    CAS  Google Scholar 

  61. N. Yamada, S. Shionoya, and T. Kushida, J. Phys. Soc. Jpn. 32, 1577 (1972).

    CAS  Google Scholar 

  62. Z. Zhou, Y. Zhou, M. Zhou, X. Su, and P. Cheng, J. Non Cryst. Solids 470, 122 (2017).

    CAS  Google Scholar 

  63. Y. Che, Y. Huang, M. Huang, R. Chen, and Z. Luo, J. Am. Ceram. Soc. 88, 19 (2005).

    Google Scholar 

  64. J. Pisarska, W.A. Pisarski, and W.R. Romanowski, Opt. Laser Technol. 42, 805 (2010).

    CAS  Google Scholar 

  65. G. Gupta, A.D. Sontakke, P. Karmakar, K. Biswas, S. Balaji, R. Saha, R. Sen, and K. Annapurna, J. Lumin. 149, 163 (2014).

    CAS  Google Scholar 

  66. R.T. Karunakaran, K. Marimuttu, S. Arumugam, S. Surendra Babu, S.F. Leon-Luis, and C.K. Jayasankar, Opt. Mater. 32, 1035 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Praveena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, R.N.A., Vijaya, N., Babu, P. et al. Optical Absorption and NIR Photoluminescence of Nd3+-Activated Strontium Phosphate Glasses. J. Electron. Mater. 49, 6358–6368 (2020). https://doi.org/10.1007/s11664-020-08383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08383-5

Keywords

Navigation