Log in

Improvement of Temperature Stability, Dielectric Properties and Nonlinear Current-Electric Field Characteristic of CaCu3Ti4.2−xSnxO12 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric properties and the nonlinear current density–electric field (JE) relationship of CaCu3Ti4.2−xSnxO12 (x = 0.00, 0.05 and 0.10) ceramics at various sintering temperatures are presented. Excellent dielectric properties with a very low tanδ ∼ 0.008–0.020, a giant ε ∼ 6495–16,975, and stability of Δε of < ± 15% over the temperature range of −60 to 210°C are obtained in a CaCu3Ti4.15Sn0.05O12 ceramic sintered at 1080°C and CaCu3Ti4.10Sn0.10O12 ceramics sintered at both 1080°C and 1100°C. Additionally, all ceramics exhibited a nonlinear JE relationship. A maximal nonlinear coefficient (α) of ∼ 1044.4 is obtained in the CaCu3Ti4.15Sn0.05O12 sintered at 1080°C. X-ray diffraction and field emission scanning electron microscopy techniques were used for structural and microstructural evaluation of all ceramics. Elemental map** with energy dispersive X-ray spectroscopy confirmed the presence of Sn4+ dopant at the main CaCu3Ti4O12 site and in minor TiO2 phases of all Sn4+ doped CaCu3Ti4.2O12 ceramics. This mixed phase plays an important role to increase grain boundary resistance (Rgb) and significantly improves the thermal stability of dielectric properties, as well as the nonlinear J-E relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nishino, J. Power Sources 60, 137 (1996).

    Article  CAS  Google Scholar 

  2. Y. Wan, L. Tang, X. Dang, P. Ren, M. Ma, K. Song, and G. Zhao, Ceram. Int. 45, 2596 (2019).

    Article  CAS  Google Scholar 

  3. J. Li, F. Li, Z. Xu, and S. Zhang, Adv. Mater. 30, 1802155 (2018).

    Article  CAS  Google Scholar 

  4. M. Pan and C.A. Randall, IEEE Electr. Insul. 26, 44 (2010).

    Article  CAS  Google Scholar 

  5. P. Mao, J. Wang, L. Zhang, S. Liu, Y. Zhao, and Q. Sun, J. Mater. Sci. Mater. Electron. 30, 13401 (2019).

    Article  CAS  Google Scholar 

  6. X.J. Luo, Y.T. Zhang, D.H. Xu, S.S. Chen, Y. Wang, Y. Chai, Y.S. Liu, S.L. Tang, C.P. Yang, and K. Bärner, Ceram. Int. 45, 12994 (2019).

    Article  CAS  Google Scholar 

  7. J. Jumpatam, N. Chanlek, and P. Thongbai, Appl. Surf. Sci. 476, 623 (2019).

    Article  CAS  Google Scholar 

  8. N. Zhao, P. Liang, D. Wu, X. Chao, and Z. Yang, Ceram. Int. 45, 22991 (2019).

    Article  CAS  Google Scholar 

  9. P. Liang, Y. Li, F. Li, X. Chao, and Z. Yang, Mater. Res. Bull. 52, 42 (2014).

    Article  CAS  Google Scholar 

  10. B. Xu, J. Zhang, Z. Tian, and S.L. Yuan, Mater. Lett. 75, 87 (2012).

    Article  CAS  Google Scholar 

  11. X. Li, X. Chen, X. Liu, X. Yan, H. Zhou, G. Liu, X. Li, and J. Sun, J. Electron. Mater. 48, 296 (2019).

    Article  CAS  Google Scholar 

  12. R. Muhammad, J. Camargo, A. Prado, and M.S. Castro, Mater. Lett. 233, 258 (2018).

    Article  CAS  Google Scholar 

  13. X. Huang, W. Zhang, J. **e, Q. Xu, L. Zhang, H. Hao, H. Liu, and M. Cao, J. Mater. Sci. Mater. Electron. 28, 4204 (2017).

    Article  CAS  Google Scholar 

  14. P. Hu, W. Sun, M. Fan, J. Qian, J. Jiang, Z. Dan, Y. Lin, C.-W. Nan, M. Li, and Y. Shen, Appl. Surf. Sci. 458, 743 (2018).

    Article  CAS  Google Scholar 

  15. L. Ramajo, R. Parra, J.A. Varela, M.M. Reboredo, M.A. Ramírez, and M.S. Castro, J. Alloy. Compd. 497, 349 (2010).

    Article  CAS  Google Scholar 

  16. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, and S. Maensiri, Mater. Res. Bull. 77, 178 (2016).

    Article  CAS  Google Scholar 

  17. J.A. Cortés, G. Cotrim, S. Orrego, A.Z. Simões, and M.A. Ramírez, J. Alloy. Compd. 735, 140 (2018).

    Article  CAS  Google Scholar 

  18. E. Swatsitang, K. Prompa, and T. Putjuso, J. Mater. Sci. Mater. Electron. 29, 12639 (2018).

    Article  CAS  Google Scholar 

  19. E. Swatsitang, K. Prompa, and T. Putjuso, Appl. Surf. Sci. 478, 197 (2019).

    Article  CAS  Google Scholar 

  20. E. Swatsitang, K. Prompa, and T. Putjuso, J. Alloy. Compd. 789, 231 (2019).

    Article  CAS  Google Scholar 

  21. E. Swatsitang, K. Prompa, and T. Putjuso, Ceram. Int. 45, 14733 (2019).

    Article  CAS  Google Scholar 

  22. R. Espinoza-González, S. Hevia, and á. Adrian, Ceram. Int. 44, 15588 (2018).

    Article  CAS  Google Scholar 

  23. L. Ren, L. Yang, C. Xu, X. Zhao, and R. Liao, J. Alloy. Compd. 768, 652 (2018).

    Article  CAS  Google Scholar 

  24. Z. Xu, H. Qiang, Y. Chen, and Z. Chen, Mater. Chem. Phys. 191, 1 (2017).

    Article  CAS  Google Scholar 

  25. C. Sripakdee, K. Prompa, E. Swatsitang, and T. Putjuso, J. Alloy. Compd. 779, 521 (2019).

    Article  CAS  Google Scholar 

  26. J. Wang, Z. Lu, and Z. Chen, Mater. Sci. Eng. B 243, 10 (2019).

    Article  CAS  Google Scholar 

  27. L. Sun, Q. Ni, J. Guo, E. Cao, W. Hao, Y. Zhang, and L. Ju, Appl. Phys. A 124, 428 (2018).

    Article  CAS  Google Scholar 

  28. B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, and Q. Li, Ceram. Int. 44, 10968 (2018).

    Article  CAS  Google Scholar 

  29. K. Prompa, E. Swatsitang, and T. Putjuso, Ceram. Int. 44, S72 (2018).

    Article  CAS  Google Scholar 

  30. J. Wang, Z. Lu, T. Deng, C. Zhong, and Z. Chen, J. Eur. Ceram. Soc. 38, 3505 (2018).

    Article  CAS  Google Scholar 

  31. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, K. Wu, Z. Wang, and J. Li, Ceram. Int. 45, 15082 (2019).

    Article  CAS  Google Scholar 

  32. L. Ni, X.M. Chen, and X.Q. Liu, Mater. Chem. Phys. 124, 982 (2010).

    Article  CAS  Google Scholar 

  33. J.Y. Li, X.T. Zhao, S.T. Li, and M.A. Alim, J. Appl. Phys. 108, 104104 (2010).

    Article  CAS  Google Scholar 

  34. M.H. Cohen, J.B. Neaton, L. He, and D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003).

    Article  CAS  Google Scholar 

  35. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, and D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012).

    Article  CAS  Google Scholar 

  36. P. Thongbai, B. Putasaeng, T. Yamwong, and S. Maensiri, J. Alloy. Compd. 509, 7416 (2011).

    Article  CAS  Google Scholar 

  37. E. Jansen, W. Schäfer, and G. Will, J. Appl. Crystallogr. 27, 492 (1994).

    Article  CAS  Google Scholar 

  38. B. Ravel and M. Newville, J. Synchrotron Radiat. 12, 537 (2005).

    Article  CAS  Google Scholar 

  39. S. Guillemet-Fritsch, T. Lebey, M. Boulos, and B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006).

    Article  CAS  Google Scholar 

  40. A.A. Felix, L.A. Saska, V.D.N. Bezzon, M. Cilense, and M.A. Ramirez, Ceram. Int. 45, 14305 (2019).

    Article  CAS  Google Scholar 

  41. Z. Peng, P. Liang, X. Chen, Z. Yang, and X. Chao, Mater. Res. Bull. 98, 340 (2018).

    Article  CAS  Google Scholar 

  42. D. Xu, X. Yue, Y. Zhang, J. Song, X. Chen, S. Zhong, J. Ma, L. Ba, L. Zhang, and S. Du, J. Alloy. Compd. 773, 853 (2019).

    Article  CAS  Google Scholar 

  43. X. Wang, P. Liang, Z. Peng, H. Peng, Y. **ang, X. Chao, and Z. Yang, J. Alloy. Compd. 778, 391 (2019).

    Article  CAS  Google Scholar 

  44. W. Hao, P. Xu, M. Wang, S. Yang, W. Yupeng, H. Wu, L. Sun, E. Cao, and Y. Zhang, J. Alloy. Compd. 740, 1159 (2018).

    Article  CAS  Google Scholar 

  45. X.W. Wang, P.B. Jia, L.Y. Sun, B.H. Zhang, X.E. Wang, Y.C. Hu, J. Shang, and Y.Y. Zhang, J. Mater. Sci. Mater. Electron. 29, 2244 (2018).

    Article  CAS  Google Scholar 

  46. L. Sun, R. Zhang, Z. Wang, E. Cao, Y. Zhang, and L. Ju, J. Alloy. Compd. 663, 345 (2016).

    Article  CAS  Google Scholar 

  47. A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, R. Robert, and M. Jose, Mater. Res. Bull. 106, 81 (2018).

    Article  CAS  Google Scholar 

  48. P. Thongbai, J. Jumpatam, T. Yamwong, and S. Maensiri, J. Eur. Ceram. Soc. 32, 2423 (2012).

    Article  CAS  Google Scholar 

  49. S. Kaur, A. Kumar, A.L. Sharma, and D.P. Singh, Ceram. Int. 45, 7743 (2019).

    Article  CAS  Google Scholar 

  50. S.D. Hutagalung, M.I.M. Ibrahim, and Z.A. Ahmad, Mater. Chem. Phys. 112, 83 (2008).

    Article  CAS  Google Scholar 

  51. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).

    Article  CAS  Google Scholar 

  52. J. Li, S. Yang, J. Liu, Y. Zhuang, Y. Tian, Q. Hu, Z. Xu, L. Wang, and F. Li, J. Alloy. Compd. 786, 377 (2019).

    Article  CAS  Google Scholar 

  53. H. Peng, P. Liang, D. Wu, X. Zhou, Z. Peng, Y. **ang, X. Chao, and Z. Yang, J. Alloy. Compd. 783, 423 (2019).

    Article  CAS  Google Scholar 

  54. X. Guo, Y. Pu, W. Wang, H. Chen, R. Shi, Y. Shi, M. Yang, J. Li, and X. Peng, J. Alloy. Compd. 797, 58 (2019).

    Article  CAS  Google Scholar 

  55. W.C. Ribeiro, R.G.C. Araújo, and P.R. Bueno, Appl. Phys. Lett. 98, 132906 (2011).

    Article  CAS  Google Scholar 

  56. Q. Cai, Y. Zhang, C. Liang, P. Li, H. Gu, X. Liu, J. Wang, Z. Shentu, J. Fan, and G. Shao, Electrochim. Acta 261, 227 (2018).

    Article  CAS  Google Scholar 

  57. R. Xue, D. Liu, Z. Chen, H. Dai, J. Chen, and G. Zhao, J. Electron. Mater. 44, 1088 (2015).

    Article  CAS  Google Scholar 

  58. H. Qiang and Z. Xu, J. Electron. Mater. 48, 6354 (2019).

    Article  CAS  Google Scholar 

  59. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, and L. He, J. Alloy. Compd. 778, 625 (2019).

    Article  CAS  Google Scholar 

  60. G. Riquet, S. Marinel, Y. Bréard, and C. Harnois, Ceram. Int. 45, 9185 (2019).

    Article  CAS  Google Scholar 

  61. K.M. Kim, S.J. Kim, J.H. Lee, and D.Y. Kim, J. Eur. Ceram. Soc. 27, 3991 (2007).

    Article  CAS  Google Scholar 

  62. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial support was provided by Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Hua Hin, Prachuap Khiri khan, Thailand (Grant No. C-5/2563). The first author would like to thank Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand. The Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology and Khon Kaen University, Thailand also provided financial support for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanin Putjuso.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sripakdee, C., Putjuso, S. & Putjuso, T. Improvement of Temperature Stability, Dielectric Properties and Nonlinear Current-Electric Field Characteristic of CaCu3Ti4.2−xSnxO12 Ceramics. J. Electron. Mater. 49, 3555–3565 (2020). https://doi.org/10.1007/s11664-020-08044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08044-7

Keywords

Navigation