Log in

AlN/GaN HEMT with Gate Insulation and Current Collapse Suppression Using Thermal ALD ZrO2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this letter, we report the device characteristics of AlN/GaN MIS-HEMT on silicon substrate using thermal atomic-layer-deposition (ALD) ZrO2 with various thicknesses. The thermal ALD ZrO2 thin film is deposited at 250°C, which avoids plasma enhancement during the fabrication process. From the transmission electron microscopy results, it is found that the alloy penetrates to the 2DEG region to form a carrier conductive pathway which facilitates the ohmic contact formation. The optimized 7 nm-thick ZrO2 AlN/GaN MIS-HEMT exhibits improved Ion/Ioff ratio and suppressed current collapse degradation, compared with 4 nm-thick ZrO2 AlN/GaN MIS-HEMT and Schottky gate AlN/GaN HEMT (SG-HEMT). In addition, as compared to SG-HEMT, reverse gate leakage current can be reduced by about six orders and forward gate bias extends to + 6.3 V with 7 nm-thick ZrO2 AlN/GaN MIS-HEMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Zimmermann, D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, and H.G. **ng, IEEE Electron Device Lett. 29, 661 (2008).

    Article  CAS  Google Scholar 

  2. A.L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P.J. Willadsen, A. Schmitz, D.C. Wheeler, C.M. Butler, S.D. Burnham, and M. Micovic, IEEE Electron Device Lett. 31, 1116 (2010).

    Article  CAS  Google Scholar 

  3. H. Sun, A.R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N.R. Grandjean, and C.R. Bolognesi, IEEE Electron Device Lett. 31, 957 (2010).

    Article  CAS  Google Scholar 

  4. A.L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P.J. Willadsen, A. Schmitz, S.J. Kim, C.M. Butler, D. Brown, S.D. Burnham, and M. Micovic, IEEE Electron Device Lett. 32, 1062 (2011).

    Article  CAS  Google Scholar 

  5. K. Shinohara, A. Corrion, D. Regan, I. Milosavljevic, D. Brown, S. Burnham, P. J. Willadsen, C. Butler, A. Schmitz, D. Wheeler, A. Fung, and M. Micovic, Tech. Dig-Int. Electron Devices Meet. 10, 672 (2010).

  6. Y. Cao and D. Jena, Appl. Phys. Lett. 90, 182112 (2007).

    Article  Google Scholar 

  7. I.P. Smorchkova, S. Keller, S. Heikman, C.R. Elsass, B. Heying, P. Fini, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 77, 3998 (2000).

    Article  CAS  Google Scholar 

  8. A. Bairamis, C. Zervos, A. Adikimenakis, A. Kostopoulos, M. Kayambaki, K. Tsagaraki, G. Konstantinidis, and A. Georgakilas, Appl. Phys. Lett. 105, 113508 (2014).

    Article  Google Scholar 

  9. D. Meyer, D.A. Deen, D.F. Storm, M.G. Ancona, D.S. Katzer, R. Bass, J.A. Roussos, B.P. Downey, S.C. Binari, T. Gougousi, T. Paskova, E.A. Preble, and K.R. Evans, IEEE Electron Device Lett. 34, 199 (2013).

    Article  CAS  Google Scholar 

  10. F. Medjdoub, M. Zegaoui, N. Rolland, and P.A. Rolland, Appl. Phys. Lett. 98, 223502 (2011).

    Article  Google Scholar 

  11. L. Zhang and P. Wang, Jpn. J. Appl. Phys. 57, 096502 (2018).

    Article  Google Scholar 

  12. D.A. Deen, D.F. Storm, R. Bass, D.J. Meyer, D.S. Katzer, S.C. Binari, J.W. Lacis, and T. Gougousi, Appl. Phys. Lett. 98, 023506 (2011).

    Article  Google Scholar 

  13. J.M. Tirado, J.L. Sanchez-Rojas, and J.I. Izpura, IEEE Trans. Electron Devices 54, 410 (2007).

    Article  CAS  Google Scholar 

  14. X. Liu, S. Zhao, L. Zhang, H. Huang, J. Shi, C. Zhang, H. Lu, P. Wang, and W. Zhang, Nanoscale Res. Lett. 10, 109 (2015).

    Article  Google Scholar 

  15. S. Taking, D. MacFarlane, and E. Wasige, I.E.E.E. Trans. Electron Devices 58, 1418 (2011).

    CAS  Google Scholar 

  16. D.A. Deen, D.F. Storm, D.J. Meyer, D.S. Katzer, R. Bass, S.C. Binari, and T. Gougousi, Phys. Status Solidi C 8, 2420 (2011).

    Article  CAS  Google Scholar 

  17. D.A. Deen, S.C. Binari, D.F. Storm, D.S. Katzer, J.A. Roussos, J.C. Hackley, and T. Gougousi, Electron. Lett. 45, 423 (2009).

    Article  CAS  Google Scholar 

  18. T. Huang, X. Zhu, K. Wong, and K.M. Lau, IEEE Electron Device Lett. 33, 212 (2012).

    Article  Google Scholar 

  19. M. Higashiwaki, T. Mimura, and T. Matsui, IEEE Electron Device Lett. 27, 719 (2006).

    Article  CAS  Google Scholar 

  20. S. Seo, E. Cho, and D. Pavlidis, Electron. Lett. 44, 1428 (2008).

    Article  CAS  Google Scholar 

  21. M. **ao, X. Duan, J. Zhang, and Y. Hao, IEEE Electron Device Lett. 39, 719 (2018).

    Article  CAS  Google Scholar 

  22. L. He, F. Yang, L. Li, Z. Chen, Z. Shen, Y. Zheng, Y. Yao, Y. Ni, D. Zhou, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, I.E.E.E. Trans. Electron Devices 64, 1554 (2017).

    CAS  Google Scholar 

  23. K. Balachander, S. Arulkumaran, H. Ishikawa, K. Baskar, and T. Egawa, Phys. Status Solidi A 202, R16 (2005).

    Article  CAS  Google Scholar 

  24. S. Rai, V. Adivarahan, N. Tipirneni, A. Koudymov, J. Yang, G. Simin, and M.A. Khan, Jpn. J. Appl. Phys. Part 1 45, 4985 (2006).

    Article  CAS  Google Scholar 

  25. J. Kuzmik, G. Pozzovivo, S. Abermann, J.F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, E. Bertagnolli, G. Strasser, and D. Pogany, IEEE Trans. Electron Devices 55, 937 (2008).

    Article  CAS  Google Scholar 

  26. S. Abermann, G. Pozzovivo, J. Kuzmik, C. Ostermaier, C. Henkel, O. Bethge, G. Strasser, D. Pogany, J.F. Carlin, N. Grandjean, and E. Bertagnolli, IEEE Electron Lett. 45, 570 (2009).

    Article  CAS  Google Scholar 

  27. G. Ye, H. Wang, S. Arulkumaran, G.I. Ng, R. Hofstetter, Y. Li, M.J. Anand, K.S. Ang, Y.K.T. Maung, and S.C. Foo, Appl. Phys. Lett. 103, 142109 (2013).

    Article  Google Scholar 

  28. M. Hatano, Y. Taniguchi, S. Kodama, H. Tokuda, and M. Kuzuhara, Appl. Phys. Express 7, 044101 (2014).

    Article  Google Scholar 

  29. T.J. Anderson, V.D. Wheeler, D.I. Shahin, M.J. Tadjer, A.D. Koehler, K.D. Hobart, A. Christou, F.J. Kub, and C.R. Eddy Jr., Appl. Phys. Express 9, 071003 (2016).

    Article  Google Scholar 

  30. M. Ťapajna, J. Kuzmík, K. ČiČo, D. Pogany, G. Pozzovivo, G. Strasser, S. Abermann, E. Bertagnolli, J.-F. Carlin, N. Grandjean, and K. Fröhlich, Jpn. J. Appl. Phys. Part 1 48, 090201 (2009).

    Article  Google Scholar 

  31. D. Gregusova, K. Husekova, R. Stoklas, M. Blaho, M. Jurkovic, J.-F. Carlin, N. Grandjean, and P. Kordos, Jpn. J. Appl. Phys. Part 1 52, 08JN07 (2013).

    Article  Google Scholar 

  32. H. Jiang, C.W. Tang, and K.M. Lau, IEEE Electron Device Lett. 39, 405 (2018).

    Article  CAS  Google Scholar 

  33. L. Zhang, J. Shi, H. Huang, X. Liu, S. Zhao, P. Wang, and W. Zhang, IEEE Electron Device Lett. 36, 896 (2015).

    Article  CAS  Google Scholar 

  34. Y. Li, G.I. Ng, S. Arulkumaran, G. Ye, C. Kumar, M.J. Anand, and Z. Liu, Appl. Phys. Express 8, 041001 (2015).

    Article  Google Scholar 

  35. A. Fontserè, A. Pérez-Tomás, M. Placidi, J. Llobet, N. Baron, S. Chenot, Y. Cordier, J.C. Moreno, P.M. Gammon, M.R. Jennings, M. Porti, A. Bayerl, M. Lanza, and M. Nafría, Appl. Phys. Lett. 99, 213504 (2011).

    Article  Google Scholar 

  36. L. Wang, F.M. Mohammed, and I. Adesida, J. Appl. Phys. 103, 93516 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Y. P. Wang, B. Zhu S. X. Zhao, Z. Liu and Z.Y Su for the technical support on device fabrications. This work was supported in part by the National Science and Technology Major Project of China under Grant 2013ZX02308004, the Doctoral Scientific Research Start-Up Foundation of Henan Normal University under Grant 5101239170008 and in part by Key Laboratory of Optoelectronic Sensing Integrated Application of Hennan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Qing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhang, LQ. & Wang, PF. AlN/GaN HEMT with Gate Insulation and Current Collapse Suppression Using Thermal ALD ZrO2. J. Electron. Mater. 48, 7076–7080 (2019). https://doi.org/10.1007/s11664-019-07524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07524-9

Keywords

Navigation