Log in

Effect of Isovalent Substitution on Microwave Dielectric Properties of Mg4Nb2O9 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dependence of microwave dielectric properties on the isovalent substitution of (Sn 4+1/2 W1/26+)5+ (electronegativity difference from O2−, X = 2.16) and (Ti 4+1/2 W1/26+)5+ (X = 1.95), with higher electronegativity differences than Nb5+ (X = 1.6) at Nb5+-sites of Mg4Nb2O9 ceramics was investigated. As expected from the electronegativity values, the quality factor of the specimens reached the highest value (274000 GHz) at X = 0.05 because Mg4Nb1.95(Sn1/2W1/2)0.05 O9 had a higher average bond valence than the other specimens. The dielectric constants (K) of the specimens were affected by the theoretical dielectric polarizability. The K value of specimens decreased with increasing x because Nb5+ has a higher dielectric polarizability (3.97 Å3) than the substitution ions such as (Sn1/2W1/2)5+ (3.015 Å3) and (Ti1/2W1/2)5+ (3.065 Å3). The effects of the structural characteristics with isovalent substitution on the microwave dielectric properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Patel, Int. J. Res. Dev. Technol. 4, 26 (2015).

    Google Scholar 

  2. R.J. Cava, J. Mater. Chem. 11, 54 (2001).

    Article  Google Scholar 

  3. S.-O. Yoon, D.-K. Choi, J.-H. Oh, and S. Kim, J. Korean Ceram. Soc. 55, 364 (2018).

    Article  Google Scholar 

  4. H.J. Jo and E.S. Kim, Ceram. Int. 42, 5479 (2016).

    Article  Google Scholar 

  5. S.H. Kim and E.S. Kim, Ceram. Int. 42, 15035 (2016).

    Article  Google Scholar 

  6. A. Kan and H. Ogawa, J. Alloys Compd. 364, 249 (2004).

    Article  Google Scholar 

  7. A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, J. Eur. Ceram. Soc. 27, 2977 (2007).

    Article  Google Scholar 

  8. A. Kan and H. Ogawa, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, IEEE. 519 (2007).

  9. H. Ogawa, H. Taketani, A. Kan, A. Fujita, and G. Zouganelis, J. Eur. Ceram. Soc. 25, 2859 (2005).

    Article  Google Scholar 

  10. A. Kan, H. Ogawa, A. Yokoi, and H. Osato, Jpn. J. Appl. Phys. 42, 6154 (2003).

    Article  Google Scholar 

  11. H.T. Wu and L.X. Li, J. Sol-Gel Sci. Tech. 58, 48 (2011).

    Article  Google Scholar 

  12. J.H. Kim and E.S. Kim, Ceram. Int. 43, S339 (2017).

    Article  Google Scholar 

  13. L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).

    Article  Google Scholar 

  14. T. Roisnel and J.R. Carvajal, WinPLOTR Mater. Sci. Forum 378–381, 118 (2001).

    Article  Google Scholar 

  15. N. Kumada, K. Taki, and N. Kinomura, Mater. Res. Bull. 37, 1017 (2000).

    Article  Google Scholar 

  16. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, Microw. Symp. Dig. 87, 277 (1987).

    Article  Google Scholar 

  17. C.B.W. Hakki and P.D. Coleman, Microw. Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  18. K. Sreedhar and N.R. Pavaskar, Mater. Lett. 53, 452 (2002).

    Article  Google Scholar 

  19. Q. Liao, L. Li, P. Zhang, L. Cao, and Y. Han, Mater. Sci. Eng. B 176, 41 (2011).

    Article  Google Scholar 

  20. Y.B. Chen, Jpn. J. Appl. Phys. 51, 085804 (2012).

    Google Scholar 

  21. D.M. Iddles, A.J. Bell, and A.J. Moulson, J. Mat. Sci. 27, 6303 (1992).

    Article  Google Scholar 

  22. I.D. Brown and D. Altermatt, Acta Crystallogr. B 41, 244–247 (1985).

    Article  Google Scholar 

  23. I.D. Brown and K.U. Kang, Acta Crystallogr. B 32, 1957 (1976).

    Article  Google Scholar 

  24. J. Li, Y. Han, T. Qiu, and C. **, Mater. Res. Bull. 47, 2375 (2012).

    Article  Google Scholar 

  25. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  26. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  Google Scholar 

  27. A.J. Bosman and E.E. Havinga, Phys. Rev. 129, 1593 (1963).

    Article  Google Scholar 

  28. P. Liu, E.S. Kim and K.H. Yoon, Jpn. J. Appl. Phys. 40, 5769–5773 (2001).

    Article  Google Scholar 

  29. E.L. Colla, I.M. Reaney, and N Setter, J. Appl. Phys. 74, 3414 (1993).

Download references

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2015R1D1A1A09061528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eung Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kim, E.S. Effect of Isovalent Substitution on Microwave Dielectric Properties of Mg4Nb2O9 Ceramics. J. Electron. Mater. 48, 2411–2417 (2019). https://doi.org/10.1007/s11664-019-06995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06995-0

Keywords

Navigation