Log in

Structural, Morphological, Differential Scanning Calorimetric and Thermogravimetric Studies of Ball Milled Fe Doped Nanoscale La0.67Sr0.33MnO3 Manganite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ball milling route has been used to produce the La0.67Sr0.33Mn0.85Fe0.15O3 (LSMFO) nanocrystalline sample from oxide precursors. The sample was characterized using x-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX), differential scanning calorimetry (DSC) and thermogravimetric (TGA) measurements. The x-ray diffraction confirms the phase purity of sample and shows that the sample crystallizes in the rhombohedral perovskite structure with a R-3c space group. The scanning electron micrograph shows the presence of well-faceted crystallites of LSMFO. The EDAX spectrum demonstrates the molar ratio of different elements of nanocrystalline LSMFO. Furthermore, the crystallite size using the Debye–Scherrer formula and William-Hall analysis has been found as 24 nm and 29 nm, respectively. Our results support the idea that a good quality nanocrystalline LSMFO sample can be obtained using the ball milling route. We also discuss the DSC and TGA curves and analyse the results in terms of phase transition, calcination temperature and activation barrier energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (New York: Springer, 2003), pp. 9–20.

    Google Scholar 

  2. S. **, T.H. Tiefel, and M. McCormark, Science 264, 413 (1993).

    Article  Google Scholar 

  3. A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, and Y. Tokura, Nature 373, 407 (1995).

    Article  Google Scholar 

  4. Y. Tokura, Colossal Magnetoresistive Oxides (Netherlands: Gordon and Breach Science, 2000), pp. 1–53.

    Google Scholar 

  5. J.B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  Google Scholar 

  6. M. Talati and P.K. Jha, Phys. Rev. B 74, 134406 (2006).

    Article  Google Scholar 

  7. M. Talati and P.K. Jha, Comput. Mater. Sci. 37, 64 (2006).

    Article  Google Scholar 

  8. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).

    Article  Google Scholar 

  9. X.H. Huang, J.F. Ding, Z.L. Jiang, Y.W. Yin, Q.X. Yu, and X.G. Li, J. Appl. Phys. 106, 083904 (2009).

    Article  Google Scholar 

  10. P.K. Davies, H. Wu, A.Y. Borisevich, I.E. Molodetsky, and L.A. Farber, Rev. Mater. Res. 38, 369 (2008).

    Article  Google Scholar 

  11. L. Sebastian, A. Jose, D. Sheptyakov, M. Alguero, M. Angel, P. Vladimir, and C.P. Jose, Inorg. Chem. 50, 5545 (2011).

    Article  Google Scholar 

  12. O. Ortiz-Diaz, M.J. Rodriguez, F. Fajardo, D.A. Tellez, and J. Roa-Rojas, Physica B 398, 248 (2007).

    Article  Google Scholar 

  13. U. Joshi and J.S. Lee, Solid State Phenom. 19, 275 (2007).

    Article  Google Scholar 

  14. T. Tsuchiya, T. Yoshitake, Y. Shimakawa, Y. Kubo, Y. Yamaguchi, T. Manabe, T. Kumagai, and S. Mizuta, Appl. Phys. Mater. Sci. Process. 79, 1537 (2004).

    Article  Google Scholar 

  15. A.J. Darbandi, T. Enz, and H. Hahn, Solid State Ion. 180, 424 (2009).

    Article  Google Scholar 

  16. M. Izumi, Y. Murakami, Y. Konishi, T. Manako, M. Kawasaki, and Y. Tokura, Phys. Rev. B 60, 1211 (1999).

    Article  Google Scholar 

  17. V.S.R. Channu, R. Holze, and E.H. Walker, New J. Glass Ceram. 3, 29 (2013)

    Article  Google Scholar 

  18. C. Zener, Phys. Rev. 81, 440 (1951).

    Article  Google Scholar 

  19. N. Rama, V. Sankaranarayan, and R. Rao, J. Alloys Compd. 466, 12 (2008).

    Article  Google Scholar 

  20. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  Google Scholar 

  21. K.P. Lim, S.W. Ng, S.A. Halim, S.K. Chen, and J.K. Wong, Am. J. Appl. Sci. 6, 1153 (2009).

    Article  Google Scholar 

  22. H. Aono, H. Hirazawa, H. Naohara, T. Maehara, H. Kikkawa, and Y. Watanabe, Mater. Res. Bull. 40, 1126 (2005).

    Article  Google Scholar 

  23. M. Venkatesan, S. Nawka, S.C. Pillai, and J.M.D. Coey, J. Appl. Phys. 93, 8023 (2003).

    Article  Google Scholar 

  24. D. Thapa, V.R. Palkar, M.B. Kurup, and S.K. Malik, Mater. Lett. 58, 2692 (2004).

    Article  Google Scholar 

  25. P.K. Siwach, H.K. Singh, and O.N. Srivastava, J. Phys. Condens. Matter 20, 273201 (2008).

    Article  Google Scholar 

  26. S.K. Hasanain, M. Nadeem, W.H. Shah, M.J. Akhtar, and M.M. Hasan, J. Phys. Condens. Matter 12, 9007 (2000).

    Article  Google Scholar 

  27. K. Ghosh, S.B. Ogale, R. Ramesh, R.L. Greene, and T. Venkatesan, Phys. Rev. B 59, 533 (1999).

    Article  Google Scholar 

  28. W.H. Shah and S.K. Hasanain, J. Mater. Res. 26, 2599 (2011).

    Article  Google Scholar 

  29. J.A. Mydosh, Spin Glasses: An Experimental Introduction (London: Taylor and Francis, 1993), pp. 1–256.

    Google Scholar 

  30. L.F. Barquin and R.G. Calderon, J. Phys. Conf. Ser. 17, 87 (2005).

    Article  Google Scholar 

  31. J. Gutiérrez, A. Peña, J.M. Barandiarán, J.L. Pizarro, T. Hernández, L. Lezama, M. Insausti, and T. Rojo, Phys. Rev. B 61, 9028 (2000).

    Article  Google Scholar 

  32. J. Gutiérrez, F.J. Bermejo, J.M. Barandiarán, S.P. Cottrell, P. Romano, C. Mondelli, J.R. Stewart, L. Fernández Barquín, and A. Peña, Phys. Rev. B 73, 054433 (2006).

    Article  Google Scholar 

  33. E. Banks and N. Tashima, J. Appl. Phys. 41, 1186 (1970).

    Article  Google Scholar 

  34. G.H. Jonker, Physica 20, 1118 (1954).

    Article  Google Scholar 

  35. A.V. Deshmukh, S.I. Patil, S.M. Bhagat, P.R. Sagdeo, R.J. Choudhary, and D.M. Phase, J. Phys. D Appl. Phys. 42, 185410 (2009).

    Article  Google Scholar 

  36. M.M. Xavier Jr., F.A.O. Cabral, J.H. Araujo, C. Chesman, and T. Dumelow, Phys. Rev. B 63, 012408 (2000).

    Article  Google Scholar 

  37. W. Prellier, P. Lecoeur, and B. Mercey, J. Phys. Condens. Matter 13, 915 (2001).

    Article  Google Scholar 

  38. T. Zhang, X.P. Wang, Q.F. Fang, and X.G. Li, Appl. Phy. Rev. 1, 031302 (2014).

    Article  Google Scholar 

  39. Y. Wang and H.J. Fan, Small 8, 1060 (2012).

    Article  Google Scholar 

  40. M.A. López-Quintela, L.E. Hueso, J. Rivas, and F. Rivadulla, Nanotechnology 14, 212 (2003).

    Article  Google Scholar 

  41. S. Shankar, S. Kar, G.N. Subbanna, and A.K. Raychaudhuri, Solid State Commun. 129, 479 (2004).

    Article  Google Scholar 

  42. B.X. Huang, Y.H. Liu, R.Z. Zhang, X. Yuan, C.J. Wang, and L.M. Mei, J. Phys. D Appl. Phys. 36, 1923 (2003).

    Article  Google Scholar 

  43. S. Kaliaguine, A. van Neste, V. Szabo, J.E. Gallot, M. Bassir, and R. Muzychuk, Appl. Catal. A 209, 345 (2001).

    Article  Google Scholar 

  44. L. Manh, T.K. Anh, D.X. Loc, T.T. Huong, and N. Vu, Int. J. Nanotechnol. 8, 335 (2011).

    Article  Google Scholar 

  45. A. Urishibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

    Article  Google Scholar 

  46. M. Bibes and A. Barthelemy, IEEE Trans. Electron. Devices 54, 1003 (2007).

    Article  Google Scholar 

  47. G. Campillo, A. Gil, O. Arnache, J.J. Beltran, J. Osorio, and G. Sierra, J. Phys. Conf. Ser. 466, 012022 (2013).

    Article  Google Scholar 

  48. D.H. Manh, P.T. Phong, P.H. Nam, D.K. Tung, N.X. Phuc, and I.-J. Lee, Physica B 444, 94 (2014).

    Article  Google Scholar 

  49. M. van den Bossche† and S. McIntosh, Chem. Mater. 22, 5856 (2010).

    Article  Google Scholar 

  50. D. Varshney and M.A. Dar, J. Alloys Compd. 619, 122 (2015).

    Article  Google Scholar 

  51. Y. Shlapa, M. Kulyk, V. Kalita, T. Polek, A. Tovstolytkin, J.M. Greneche, S. Solopan, and A. Belous, Nanoscale Res. Lett. 11, 1 (2016).

    Article  Google Scholar 

  52. M. Khlifi, M. Bejar, O. EL Sadek, E. Dhahri, M.A. Ahmed, and E.K. Hlil, J. Alloys Compd. 509, 7410 (2011).

    Article  Google Scholar 

  53. D. Fatnassi, J.L. Rehspringer, E.K. Hlil, D. Niznansky, M. Ellouze, and F. Elhalouani, J. Supercond. Nov. Magn. 287, 2401 (2015).

    Article  Google Scholar 

  54. C. Suryanarayana and M.G. Norton, X-Ray Diffraction: A Practical Approach (New York: Springer, 1998), pp. 1–273.

    Book  Google Scholar 

  55. M. Parra and F.Z. Haque, J. Mater. Res. Technol. 3, 363 (2014).

    Article  Google Scholar 

  56. N.S. Gonclaves, J.A. Carvalho, Z.M. Lima, and J.M. Sasaki, Mater. Lett. 72, 36 (2012).

    Article  Google Scholar 

  57. Z.F. Zi, Y.P. Sun, X.B. Xhu, Z.R. Yang, J.M. Dai, and W.H. Song, J. Magn. Magn. Mater. 321, 2378 (2009).

    Article  Google Scholar 

  58. N.D. Thorat, K.P. Shinde, S.H. Pawar, K.C. Barick, C.A. Betty, and R.S. Ningthoujam, Dalton Trans. 41, 3060 (2012).

    Article  Google Scholar 

  59. C.H. Wei, L.K. Pah, A.H. Shaari, C.S. Kien, A. Gan, N.S. Wei, and W.J. Kuen, Solid State Sci. Technol. 20, 148 (2012).

    Google Scholar 

  60. S. Chen, C. Yang, L. Xu, and S. Tang, J. Mater. Sci. Technol. 26, 721 (2010).

    Article  Google Scholar 

  61. J. O’neil Michael and S. Watson Emmett, U. S. Patent 484, 3, 263 (1966).

  62. I. Dhiman, A. Das, P.K. Mishra, and L. Panicker, Phys. Rev. B 77, 09440 (2009).

    Google Scholar 

  63. A. Pandey, A. Pratap, D. Bhattacharya, and R.G. Sharma, Physica C 341, 2449 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K. Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astik, N., Jha, P.K. & Pratap, A. Structural, Morphological, Differential Scanning Calorimetric and Thermogravimetric Studies of Ball Milled Fe Doped Nanoscale La0.67Sr0.33MnO3 Manganite. J. Electron. Mater. 47, 1937–1943 (2018). https://doi.org/10.1007/s11664-017-5994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5994-7

Keywords

Navigation