Log in

Hydrogen Gas Sensing Based on SnO2 Nanostructure Prepared by Sol–Gel Spin Coating Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A novel H2 gas sensor based on a SnO2 nanostructure was operated at room temperature (RT) (25°C). The SnO2 nanostructure was grown on Al2O3 substrates by a sol–gel spin coating method. The structural characteristics, surface morphology, and gas sensing properties of the SnO2 nanostructure were investigated. Thin film annealing at 500°C produced a high-quality SnO2 nanostructure with a crystallite size of 33.98 nm. A metal–semiconductor–metal gas sensor was fabricated using the SnO2 nanostructure and palladium metal. The gas sensor exhibited a sensitivity of 2570% to 1000 ppm H2 gas at RT. The sensing measurements for H2 gas at different temperatures (RT to 125°C) were repeatable␣for 50 min. Sensor sensitivity was tested under different H2 concentrations (150 ppm, 250 ppm, 375 ppm, 500 ppm, and 1000 ppm) at different operating temperatures. Adding glycerin to the sol solution increased the porosity of the SnO2 nanostructure surface, which increased the adsorption/desorption of gas molecules which leads to the high sensitivity of the sensor. Therefore, this H2 gas sensor is a suitable␣portable␣RT gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).

    Article  Google Scholar 

  2. P.R. Bueno, S.A. Pianaro, E.C. Pereira, E. Longo, and J.A. Varela, J. Appl. Phys. 84, 3700 (1998).

    Article  Google Scholar 

  3. S. Gubbala, V. Chakrapani, and V. Kumar, Adv. Funct. Mater. 18, 2411 (2008).

    Article  Google Scholar 

  4. H. Zhu, D. Yang, G. Yu, H. Zhang, and K. Yao, Nanotechnology 17, 2386 (2006).

    Article  Google Scholar 

  5. G. Neri, Chemosensors 3, 1 (2015).

    Article  Google Scholar 

  6. R.K. Sharma, P.C.H. Chan, Z. Tang, G. Yan, G. Yan, I.-M. Hsing, and J.K. Sin, Sens. Actuators B 72, 160 (2001).

    Article  Google Scholar 

  7. J. Kaur, S.C. Roy, and M.C. Bhatnagar, Sens. Actuators B Chem. 123, 1090 (2007).

    Article  Google Scholar 

  8. V. Kumar, S. Sen, K.P. Muthe, N.K. Gaur, and S.K. Gupta, Sens. Actuators B 138, 587 (2009).

    Article  Google Scholar 

  9. A. Kolmakov, Y. Zhang, and G. Cheng, Adv. Mater. 15, 997 (2003).

    Article  Google Scholar 

  10. A. Teeramongkonrasmee and M. Sriyudthsak, Sens. Actuators B 66, 256 (2000).

    Article  Google Scholar 

  11. H.S. Al-Salman, M.J. Abdullah, and N. Al-Hardan, Ceram. Int. 39, S447 (2013).

    Article  Google Scholar 

  12. W.J. Buttner, M.B. Post, R. Burgess, and C. Rivkin, Int. J. Hydrogen Energy 36, 2462 (2011).

    Article  Google Scholar 

  13. S.J. Pearton, F. Ren, Y.L. Wang, B.H. Chu, and K.H. Chen, Prog. Mater. Sci. 55, 1 (2010).

    Article  Google Scholar 

  14. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Sens. Actuators B 157, 329 (2011).

    Article  Google Scholar 

  15. D. Barreca, D. Bekermann, E. Comini, and A. Devi, Sens. Actuators B 149, 1 (2010).

    Article  Google Scholar 

  16. M. Batzill, J.M. Burst, and U. Diebold, Thin Solid Films 484, 132 (2005).

    Article  Google Scholar 

  17. H.W. Kim, N.H. Kim, and J.H. Myung, Physica Status Solidi A 202, 1758 (2005).

    Article  Google Scholar 

  18. C. Ke, W. Zhu, J. Pan, and Z. Yang, Curr. Appl. Phys. 11, S306 (2011).

    Article  Google Scholar 

  19. I.H. Kadhim and H.A. Hassan, J. Appl. Sci. Agric. 10, 159 (2015).

    Google Scholar 

  20. M.M. Viana, T.D. Mohallem, G.L. Nascimento, and N.D. Mohallem, Br. J. Phys. 36, 1081 (2006).

    Article  Google Scholar 

  21. C.J. Chang, C.K. Lin, C.C. Chen, C.Y. Chen, and E.H. Kuo, Thin Solid Films 520, 1546 (2011).

    Article  Google Scholar 

  22. T. Hamaguchi, N. Yabuki, M. Uno, and S. Yamanaka, Sens. Actuators B 113, 852 (2006).

    Article  Google Scholar 

  23. I.H. Kadhim and H.A. Hassan, Mater. Sci. Mater. Electron. 26, 1 (2015).

    Article  Google Scholar 

  24. I.H. Kadhim, H.A. Hassan, and Q.N. Abdullah, Nano Micro Lett. 8, 20 (2016).

    Article  Google Scholar 

  25. J.J. Hassan, M.A. Mahdi, C.W. Chin, and H. Abu-Hassan, Sens. Actuators B 176, 360 (2013).

    Article  Google Scholar 

  26. S. Ren, G. Fan, S. Qu, and Q. Wang, J. Appl. Phys. 110, 084312 (2011).

    Article  Google Scholar 

  27. A.M. Selman and Z. Hassan, Superlattices Microstruct. 83, 549 (2015).

    Article  Google Scholar 

  28. H. Ren, W. Zhao, L. Wang, S.O. Ryu, and C. Gu, J. Alloy. Compd. 653, 611 (2015).

    Article  Google Scholar 

  29. J.S. Lee, S.K. Sim, B. Min, K. Cho, S.W. Kim, and S. Kim, J. Cryst. Growth 267, 145 (2004).

    Article  Google Scholar 

  30. Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, and Q. Yan, NPG Asia Mater. 4, 1 (2012).

    Article  Google Scholar 

  31. C. Ke, W. Zhu, J.S. Pan, and Z. Yang, Curr. Appl. Phys. 11, S306 (2011).

    Article  Google Scholar 

  32. Q.N. Abdullah, F.K. Yam, J.J. Hassan, and C.W. Chin, Int. J. Hydrogen Energy 38, 14085 (2013).

    Article  Google Scholar 

  33. G. **e, M. Song, K. Furuya, and D.V. Louzguine, Appl. Phys. Lett. 88, 263120 (2006).

    Article  Google Scholar 

  34. I.H. Kadhim and H.A. Hassan, Mater. Sci. Mater. Electron. 27, 4356 (2016).

    Article  Google Scholar 

  35. A. Chaparadza and S.B. Rananavare, Nanotechnology 19, 45501 (2008).

    Article  Google Scholar 

  36. L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, and J. Zheng, Sens. Actuators B 160, 364 (2011).

    Article  Google Scholar 

  37. K.K. Khun, A. Mahajan, and R.K. Bedi, J. Appl. Phys. 106, 0124509 (2009).

    Article  Google Scholar 

  38. H.S. Al-Salman and M.J. Abdullah, Sens. Actuators B 181, 259 (2013).

    Article  Google Scholar 

  39. L.L. Fields, J.P. Zheng, and Y. Cheng, Appl. Phys. Lett. 88, 263102 (2006).

    Article  Google Scholar 

  40. J. Gong, Q. Chen, W. Fei, and S. Seal, Sens. Actuators B 102, 117 (2004).

    Article  Google Scholar 

  41. I.J. Kim, S. Do Han, C.H. Han, J. Gwak, and D.U. Hong, Sens. Actuators B 127, 441 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad H. Kadhim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, I.H., Abu Hassan, H. Hydrogen Gas Sensing Based on SnO2 Nanostructure Prepared by Sol–Gel Spin Coating Method. J. Electron. Mater. 46, 1419–1426 (2017). https://doi.org/10.1007/s11664-016-5166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5166-1

Keywords

Navigation