Log in

Ammonia Vapor-Assisted Synthesis of Cu(OH)2 and CuO Nanostructures: Anionic (Cl, NO3 , SO4 2−) Influence on the Product Morphology

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl, NO3 , and SO4 2− as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Rakhshani, Solid State Electron. 29, 7 (1986).

    Article  Google Scholar 

  2. J. Liu, J. **, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, C. Wang, L.H. Chen, Y. Li, G. Van Tendeloo, and B.L. Su, J. Colloid Interface Sci. 384, 1 (2012).

    Article  Google Scholar 

  3. K. Zhou, R. Wang, B. Xu, and Y. Li, Nanotechnology 17, 3939 (2006).

    Article  Google Scholar 

  4. A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, and P.K. Patanjali, Appl. Phys. Lett. 84, 1180 (2004).

    Article  Google Scholar 

  5. K. Zhang, Y. Yang, E.Y.B. Pun, and R. Shen, Nanotechnology 21, 235602 (2010).

    Article  Google Scholar 

  6. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, J.C. Li, and T. Yu, Nanotechnology 20, 085203 (2009).

    Article  Google Scholar 

  7. L.B. Chen, N. Liu, C.M. Xu, H.C. Yu, and T.H. Wang, Electrochim. Acta 54, 4198 (2009).

    Article  Google Scholar 

  8. S. Anandan, X. Wen, and S. Yang, Mater. Chem. Phys. 93, 35 (2005).

    Article  Google Scholar 

  9. M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T.B. Hadda, and I. Warad, J. Mater. Environ. Sci. 4, 792 (2013).

    Google Scholar 

  10. F.M. Al-Marzouki, O.A. Al-Hartomy, and M.A. Shah, Int. J. Manuf. Mater. Mech. Eng. 1, 58 (2011).

    Google Scholar 

  11. X. Chen, H. Cui, P. Liu, and G. Yang, Appl. Phys. Lett. 90, 183118 (2007).

    Article  Google Scholar 

  12. T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A.P. Ramirez, Nat. Mater. 7, 291 (2008).

    Article  Google Scholar 

  13. Z.S. Hong, Y. Cao, and J.F. Deng, Mater. Lett. 52, 34 (2002).

    Article  Google Scholar 

  14. S. Anandan, G.J. Lee, and J.J. Wu, Ultrason. Sonochem. 19, 682 (2012).

    Article  Google Scholar 

  15. D. Son, C. You, and T. Ki, Appl. Surf. Sci. 255, 8794 (2009).

    Article  Google Scholar 

  16. C.L. Carnes, J. Stipp, K.J. Klabunde, and J. Bonevich, Langmuir 18, 1352 (2002).

    Article  Google Scholar 

  17. Y. Lim, J. Choi, and T. Hanrath, J. Nanomater. 2012, 393160 (2012).

    Article  Google Scholar 

  18. H. Wang, J.Z. Xu, J.J. Zhu, and H.Y. Chen, J. Cryst. Growth 244, 88 (2002).

    Article  Google Scholar 

  19. D.P. Volanti, D. Keyson, L.S. Cavalcante, A.Z. Simoes, M.R. Joya, E. Longo, J.A. Varela, P.S. Pizani, and A.G. Souza, J. Alloys Compd. 459, 537 (2008).

    Article  Google Scholar 

  20. M. Mansournia, F. Azizi, and N. Rakhshan, J. Phys. Chem. Solids 80, 91 (2015).

    Article  Google Scholar 

  21. M. Mansournia and A. Hajiebrahimi, J. Mater. Sci. Mater. Electron. 26, 7117 (2015).

    Article  Google Scholar 

  22. M. Mansournia, S. Rafizadeh, and S.M. Hosseinpour-Mashkani, Ceram. Int. 42, 907 (2016).

    Article  Google Scholar 

  23. A. El-Trass, H. El-Shamy, I. El-Mehasseb, and M. El-Kemary, Appl. Surf. Sci. 258, 2997 (2012).

    Article  Google Scholar 

  24. M.A. Das, S.H. Nam, Y.S. Kim, and W.B. Kim, J. Solid State Electrochem. 14, 1719 (2010).

    Article  Google Scholar 

  25. U.W. Schonenberger, J.R. Gunter, and H.R. Oswald, J. Solid State Chem. 3, 190 (1971).

    Article  Google Scholar 

  26. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed. (New York: Wiley, 1997).

    Google Scholar 

  27. D.P. Singh, A.K. Ojha, and O.N. Srivastava, J. Phys. Chem. C 113, 3409 (2009).

    Article  Google Scholar 

  28. C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, and J. Ma, J. Phys. Chem. B 108, 17825 (2004).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to University of Kashan for supporting this work by Grant No 256749/7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Mansournia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansournia, M., Arbabi, A. Ammonia Vapor-Assisted Synthesis of Cu(OH)2 and CuO Nanostructures: Anionic (Cl, NO3 , SO4 2−) Influence on the Product Morphology. J. Electron. Mater. 46, 502–509 (2017). https://doi.org/10.1007/s11664-016-4910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4910-x

Keywords

Navigation