Log in

Thermal Diffusivity of SPS Pressed Silicon Powders and the Potential for Using Bottom–Up Silicon Quantum Dots as a Starting Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The production of nanostructured bulk materials from silicon powders has been well documented as being one way of bringing down the thermal conductivity of silicon while still maintaining its high power factor. This reduction of thermal conductivity is predicted to lead to significant increases in its figure-of-merit, ZT. The size of the starting particles has a major effect on the nanostructuring and grain size of the final silicon-based materials. Using particles of differing size and distribution, pellets were produced using spark plasma sintering. The results show a significant lowering in the thermal diffusivity as the particle size in the powders is decreased. As the starting particle size deceases from 1 μm to 60 nm, we see a tenfold decrease in the thermal diffusivity at 300 K, from 20 mm2 S−1 to 2 mm2 S−1. Both these show a significant decrease from the thermal diffusivity of 88 mm2 S−1 observed from bulk silicon. A further decrease to 1 mm2 S−1 is observed when the particle size of the starting material is decreased from 60 nm to sub-10 nm. The results also highlight the potential of using particles from solution approaches as a potential starting point for the prediction of nanostructured bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schierning, Phys. Status Solid A 211, 1235 (2014).

    Article  Google Scholar 

  2. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  Google Scholar 

  3. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  4. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, Adv. Mater. 26, 2137 (2014).

    Article  Google Scholar 

  5. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  6. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  Google Scholar 

  7. S. Ashby, J. García-Cañadas, G. Min, and Y. Chao, J. Electron. Mater. 42, 1495 (2013).

    Article  Google Scholar 

  8. W. Liu, Z. Ren, and G. Chen, Nanostructured thermoelectric materials.Thermoelectric Nanomaterials, Vol. 182, ed. K. Koumoto and T. Mori (Heidelberg: Springer, 2013), p. 255.

    Chapter  Google Scholar 

  9. M.G. Kanatzidis, Chem. Mater. 22, 648 (2009).

    Article  Google Scholar 

  10. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  11. G.H. Zhu, H. Lee, Y.C. Lan, X.W. Wang, G. Joshi, D.Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. Lett. 102, 196803 (2009).

    Article  Google Scholar 

  12. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).

    Article  Google Scholar 

  13. V. Kessler, D. Gautam, T. Hülser, M. Spree, R. Theissmann, M. Winterer, H. Wiggers, G. Schierning, and R. Schmechel, Adv. Eng. Mater. 15, 379 (2013).

    Article  Google Scholar 

  14. D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).

    Article  Google Scholar 

  15. R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G.-Y. Liu, and S.M. Kauzlarich, J. Am. Chem. Soc. 124, 1150 (2002).

    Article  Google Scholar 

  16. P.D. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).

    Article  Google Scholar 

  17. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  18. G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. Arens-Fischer, J. Phys. D 30, 2911 (1997).

    Article  Google Scholar 

  19. J. Wang, S. Sun, F. Peng, L. Cao, and L. Sun, Chem. Commun. 47, 4941 (2011).

    Article  Google Scholar 

  20. R.D. Tilley and K. Yamamoto, Adv. Mater. 18, 2053 (2006).

    Article  Google Scholar 

  21. K.A. Pettigrew, Q. Liu, P.P. Power, and S.M. Kauzlarich, Chem. Mater. 15, 4005 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Chao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashby, S.P., Bian, T., Ning, H. et al. Thermal Diffusivity of SPS Pressed Silicon Powders and the Potential for Using Bottom–Up Silicon Quantum Dots as a Starting Material. J. Electron. Mater. 44, 1931–1935 (2015). https://doi.org/10.1007/s11664-014-3599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3599-y

Keywords

Navigation