Log in

Microstructural Development and Possible Whiskering Behavior of Thin Sn Films Electrodeposited on Cu(Zn) Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The aging behavior at room temperature of thin Sn films, electrodeposited on top of Cu(Zn) substrates containing 15 wt.% and 36 wt.% Zn, was investigated, using focused ion beam microscopy and x-ray diffraction analysis to evaluate the microstructural and (residual) stress development in the specimens. For comparison, parallel experiments and similar analyses were performed with Sn films electrodeposited on pure Cu substrates. Whereas Sn whiskering was observed for the Sn films deposited on the Cu substrates, such whiskering was not observed for the Sn films deposited on the Cu(Zn) substrates. It was found that alloying the Cu substrates with Zn strongly slows down the formation rate of the intermetallic compound Cu6Sn5 at the Sn/Cu(alloy) interface. The Sn films on the Cu(Zn) substrates remained whisker free for the entire time of investigation even though an overall compressive state of stress has developed after several weeks of aging. It was concluded that a homogeneous, compressive stress in the Sn film does not lead to whisker formation: the presence of negative stress gradients is essential for Sn whisker growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Galyon, IEEE Trans. Electron. Packag. Manuf. 28, 94 (2005).

    Article  Google Scholar 

  2. C. Herring and J.K. Galt, Phys. Rev. 85, 1060 (1952).

    Article  Google Scholar 

  3. V.K. Glazunova and N.T. Kudryavtsev, Zh. Prikl. Khim. 36, 543 (1963).

    Google Scholar 

  4. K.G. Compton, A.A. Mendizza, and S.M. Arnold, Corrosion 7, 327 (1951).

    Article  Google Scholar 

  5. W.C. Ellis, Trans. Met. Soc. AIME 236, 872 (1966).

    Google Scholar 

  6. H.L. Cobb, Mon. Rev. Am. Electroplaters Soc. 33, 28 (1946).

    Google Scholar 

  7. NASA, Whisker Failures: http://nepp.nasa.gov/whisker/ failures/index.htm.

  8. B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).

    Article  Google Scholar 

  9. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).

    Article  Google Scholar 

  10. G. Galyon, L. Palmer, and R. Gedney, Glob. SMT Packag. 5, 10 (2005).

    Google Scholar 

  11. J. Smetana, IEEE Trans. Electron. Packag. Manuf. 30, 11 (2007).

    Article  Google Scholar 

  12. M. Sobiech, M. Wohlschloegel, U. Welzel, E.J. Mittemeijer, W. Huegel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 221901 (2009).

    Article  Google Scholar 

  13. M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Huegel, and A. Seekamp, Appl. Phys. Lett. 93, 011906 (2008).

    Article  Google Scholar 

  14. M. Sobiech, J. Teufel, U. Welzel, E.J. Mittemeijer, and W. Huegel, J. Electron. Mater. 40, 2300 (2011).

    Article  Google Scholar 

  15. R.M. Fisher, L.S. Darken, and K.G. Carroll, Acta Metall. 2, 368 (1954).

    Article  Google Scholar 

  16. P.L. Key, Proceedings of the IEEE Electronic Components Technology Conference (1970), pp. 155–157.

  17. R.L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  18. M. Sobiech, U. Welzel, R. Schuster, E.J. Mittemeijer, W. Huegel, A. Seekamp, and V. Mueller, Proceedings of the 57th Electronic Components and Technology Conference (2007), pp. 192–197.

  19. S.M. Miller, U. Sahaym, and M.G. Norton, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 41A, 3386 (2010).

    Article  Google Scholar 

  20. Y. Fukuda, M. Osterman, and M. Pecht, IEEE Trans. Electron. Packag. Manuf. 30, 36 (2007).

    Article  Google Scholar 

  21. R. Schetty, Circuit World 27, 17 (2001).

    Article  Google Scholar 

  22. S. Mathew, M. Osterman, M. Pecht, and F. Dunlevey, Circuit World 35, 3 (2009).

    Article  Google Scholar 

  23. S.C. Britton and M. Clarke, Proceedings of the 6th International Metal Finishing Conference (1964), pp. 205-211.

  24. C.L. Rodekohr, G.T. Flowers, J.C. Suhling, and M.J. Bozack, Proceedings of the IEEE Holm Conference on Electrical Contacts (2008), pp. 245-248.

  25. K. Fujiwara and R. Kawanaka, J. Appl. Phys. 51, 6231 (1980).

    Article  Google Scholar 

  26. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer, J. Appl. Crystallogr. 38, 1 (2005).

    Article  Google Scholar 

  27. E.J. Mittemeijer and U. Welzel, Modern Diffraction Methods (Weinheim: Wiley-VCH, 2012).

    Book  Google Scholar 

  28. PDF-2, International Center for Diffraction Data (ICDD) Version 2.1 (2002).

  29. A. Kumar, U. Welzel, and E.J. Mittemeijer, J. Appl. Crystallogr. 39, 633 (2006).

    Article  Google Scholar 

  30. C.J. Smithells and E.A. Brandes, Metal Reference Book (London: Butterworths, 1976), pp. 975–980.

    Google Scholar 

  31. A.R. West, Basic Solid State Chemistry (Weinheim: Wiley, 1992).

    Google Scholar 

  32. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, Bull. Alloy Phase Diagr. 6, 330 (1985).

    Article  Google Scholar 

  33. C.Y. Yu, K.J. Wang, and J.G. Duh, J. Electron. Mater. 39, 230 (2010).

    Article  Google Scholar 

  34. E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Progr. Surf. Sci. 88, 103 (2013).

    Article  Google Scholar 

  35. J. Stein, U. Welzel, W. Huegel, S. Blatt, and E.J. Mittemeijer, J. Appl. Cryst. 46, 1645 (2013).

    Article  Google Scholar 

  36. C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).

    Article  Google Scholar 

  37. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).

    Article  Google Scholar 

  38. P. Sarobol, J.E. Blendell, and C.A. Handwerker, Acta Mater. 61, 1991 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. A. Leineweber and Dr. S. Meka [both Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research)] for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, J., Tineo, C.A.C., Welzel, U. et al. Microstructural Development and Possible Whiskering Behavior of Thin Sn Films Electrodeposited on Cu(Zn) Substrates. J. Electron. Mater. 44, 886–894 (2015). https://doi.org/10.1007/s11664-014-3571-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3571-x

Keywords

Navigation