Log in

Investigation of the Hydrogen Silsesquioxane (HSQ) Electron Resist as Insulating Material in Phase Change Memory Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Phase change random access memory (PCRAM) affords many advantages over conventional solid-state memories due to its nonvolatility, high speed, and scalability. However, high programming current to amorphize the crystalline phase through the melt-quench process of PCRAM, known as the RESET current, poses a critical challenge and has become the most significant obstacle for its widespread commercialization. In this work, an excellent negative tone resist for high resolution electron beam lithography, hydrogen silsesquioxane (HSQ), has been investigated as the insulating material which locally blocks the contact between the bottom electrode and the phase change material in PCRAM devices. Fabrications of the highly scaled HSQ nanopore arrays (as small as 16 nm) are presented. The insulating properties of the HSQ material are studied, especially under e-beam exposure plus thermal curing. Some other critical issues about the thickness adjustment of HSQ films and the influence of the PCRAM electrode on electron scattering in e-beam lithography are discussed. In addition, the HSQ material was successfully integrated into the PCRAM devices, achieving ultra-low RESET current (sub-100 μA), outstanding on/off ratios (~50), and improved endurance at tens of nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Appl. Phys. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  2. F. Wang, T. Zhang, C.L. Liu, Z.T. Song, L.C. Wu, B. Liu, S.L. Feng, and B. Chen, Appl. Surf. Sci. 254, 2281 (2008).

    Article  Google Scholar 

  3. R.M. Shelby and S. Raoux, J. Appl. Phys. 105, 104902 (2009).

    Article  Google Scholar 

  4. J.H. Wang, J. Zhou, W.L. Zhou, H. Tong, D.Q. Huang, J.J. Sun, L. Zhang, X.M. Long, Y. Chen, L.W. Qu, and X.S. Miao, Solid-State Electron. 81, 157 (2013).

    Article  Google Scholar 

  5. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, and S.R. Elliott, Science 336, 1566 (2012).

    Article  Google Scholar 

  6. A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, in IEDM Technical Digest (2003), p. 699.

  7. S.H. Lee, Y. Jung, and Y. Agarwal, Nat. Nanotechnol. 2, 626 (2007).

    Article  Google Scholar 

  8. F. **ong, A.D. Liao, D. Estrada, and E. Pop, Science 332, 568 (2011).

    Article  Google Scholar 

  9. J. Zhou, Y. Chen, W.L. Zhou, X.S. Miao, N.N. Yu, L. Hui, L. Tian, and J.B. Yan, Appl. Surf. Sci. 280, 862 (2013).

    Article  Google Scholar 

  10. Y. Dong, B. Sarah, L. ** Seok, L.F. Abram, and P. Hongkun, Nano Lett. 8, 3429 (2008).

    Article  Google Scholar 

  11. F. **ong, M.H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, and E. Pop, Nano Lett. 13, 464 (2013).

    Article  Google Scholar 

  12. J. Vila-Comamala, S. Gorelick, V.A. Guzenko, and C. David, J. Vac. Sci. Technol. B 29, 06F301 (2011).

    Article  Google Scholar 

  13. X. Thrun, K.H. Choi, M. Freitag, A. Grenville, M. Gutsch, C. Hohle, J.K. Stowers, and J.W. Bartha, Microelectron. Eng. 98, 226 (2012).

    Article  Google Scholar 

  14. V.R. Manfrinato, L.L. Cheong, H.G. Duan, D. Winston, H.I. Smith, and K.K. Berggren, Microelectron. Eng. 88, 3070 (2011).

    Article  Google Scholar 

  15. H.G. Duan, D. Winston, J.K.W. Yang, B.M. Cord, V.R. Manfrinato, and K.K. Berggren, J. Vac. Sci. Technol. B 28, C6C58 (2010).

    Article  Google Scholar 

  16. Q.H. Yuan, G.Q. Yin, and Z.Y. Ning, Plasma Sci. Technol. 15, 86 (2013).

    Article  Google Scholar 

  17. C.C. Yang and W.C. Chen, J. Mater. Chem. 12, 1138 (2002).

    Article  Google Scholar 

  18. C.C. Huang, C.Y. Tai, C.J. Liu, R.E. Simpson, K. Knight, and D.W. Hewak, in Nano Science and Technology Institute Conference (NSTI Nanotech), vol. 1 (2008).

  19. M.J. Loboda, C.M. Grove, and R.F. Schneider, J. Electrochem. Soc. 145, 2861 (1998).

    Article  Google Scholar 

  20. M. Haffner, A. Haug, A. Heeren, M. Fleischer, H. Peisert, T. Chasse, and D.P. Kern, J. Vac. Sci. Technol. B 25, 2045 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-tech R&D Program (863 Program) (No. 2011AA010404), Program of International S&T Cooperation of the Ministry of science and technology (No. 2010D FA11050), Ph.D. Programs Foundation of Ministry of Education of China (No. 20090142110003). Major National Scientific Instrument and Equipment Development Project (No. 2011YQ160002). Thanks to Professor **a in the center of Micro-Fabrication and characterization (CMFC) of WNLO for the support in electron beam lithography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ji, H., Lan, T. et al. Investigation of the Hydrogen Silsesquioxane (HSQ) Electron Resist as Insulating Material in Phase Change Memory Devices. J. Electron. Mater. 44, 235–243 (2015). https://doi.org/10.1007/s11664-014-3390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3390-0

Keywords

Navigation