Log in

Refinement of the Solidification Structure of Austenitic Fe-Mn-C-Al TWIP Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solidification structure of austenitic Fe-22Mn-0.6C-1.6Al TWIP steel with and without Ce inoculation is compared on the macro- and microscale. The expansion of the equiaxed zone, decrease of equiaxed dendrite size and thinning of the dendrite arm are observed in Ce-inoculated TWIP steel. The refining mechanism for the expanded equiaxed zone and the decreased equiaxed dendrite size is the Ce2O3 particles acting as the heterogeneous nucleation sites. With increasing Ce content, the effective density of Ce2O3 particles of around 1 μm size increases initially and then decreases, while the total density always increases. The average diameter of Ce2O3 particles in TWIP steel increases as the amount of Ce increases. The mechanism for the thinning of the secondary dendrite arm is mainly by the solute effect, including the increase in both the undercooling in front of the dendrite tip and the drag effect on solid-liquid interface migration. In addition, the correspondence between the dendrite and grain in Fe-Mn-C-Al TWIP steel under as-cast condition is revealed. It is observed that the primary dendrite interface completely matches the austenite grain boundary. The crystallographic relationship follows 〈100〉d//〈100〉g and {100}d//{100}g (d and g represent the dendrite and grain, respectively) in both the columnar and equiaxed zones. The refinement of the equiaxed austenite grain in Fe-Mn-C-Al TWIP steel is purely the result of dendrite refining during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14(12), pp. 1213-17.

    Google Scholar 

  2. B.C. De Cooman, O. Kwon and K.G. Chin: Mater. Sci. Technol., 2012, vol. 28(5), pp. 513-27.

    Google Scholar 

  3. O. Bouaziz, S. Allain, C. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15(4), pp. 141-68.

    CAS  Google Scholar 

  4. B.C. De Cooman, Y. Estrin and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283-362.

    Google Scholar 

  5. Y.S. **: La Metall. Ital., 2011, vol. 6, pp. 43-48.

    Google Scholar 

  6. L. Bartlett and D. Van Aken: JOM, 2014, vol. 66(9), pp. 1770-84.

    CAS  Google Scholar 

  7. J. W. Cho, S. Yoo, M. S. Park, J. K. Park and K. H. Moon: Metall. Mater. Trans. B, 2017, vol. 48(1), pp. 187-96.

    CAS  Google Scholar 

  8. H.Y. Yu, S.M. Lee, J.H. Nam, S.J. Lee, D. Fabrègue, M. Park, N. Tsuji and Y.K. Lee: Acta Mater., 2017, vol. 131, pp. 435-44.

    CAS  Google Scholar 

  9. J. Park, M. Kang, S.S. Sohn, S.H. Kim, H.S. Kim, N.J. Kim and S. Lee: Mater. Sci. Eng. A, 2017, vol. 684, pp. 54-63.

    CAS  Google Scholar 

  10. R. Kalsar and S. Suwas: Scripta Mater., 2018, vol. 154, pp. 207-11.

    CAS  Google Scholar 

  11. Hamada and J. Kömi: Mater. Sci. Eng. A, 2018, vol. 718, pp. 301-04.

  12. K.K. Anand, B. Mahato, C. Haase, A. Kumar and S.G. Chowdhury: Mater. Sci. Eng. A, 2018, vol. 711, pp. 69–77.

    CAS  Google Scholar 

  13. M. Daamen, S. Richter and G. Hirt: Key Eng. Mater., 2013, vol. 554, pp. 553-61.

    Google Scholar 

  14. M. Daamen, C. Haase, J. Dierdorf, D.A. Molodov and G. Hirt: Mater. Sci. Eng. A, 2015, vol. 627, pp. 72-81.

    CAS  Google Scholar 

  15. M. Daamen, B. Wietbrock, S. Richter and G. Hirt: Steel Res. Int., 2011, vol. 82(1), pp. 70-5.

    CAS  Google Scholar 

  16. M. Daamen, W. Nessen, P.T. Pinard, S. Richter, A. Schwedt and G. Hirt: Proc. Eng., 2014, vol. 81, pp. 1535-40.

    CAS  Google Scholar 

  17. M.C. Jo, J.H. Choi, H. Lee, A. Zargaran, J.H. Ryu, S.S. Sohn, N.J. Kim and S. Lee: Mater. Sci. Eng. A, 2019, vol. 740-741, pp. 16-27.

    Google Scholar 

  18. M.C. Jo, H. Lee, A. Zargaran, J.H. Ryu, S.S. Sohn, N.J. Kim and S. Lee: Mater. Sci. Eng. A, 2018, vol. 737, pp. 69-76.

    CAS  Google Scholar 

  19. J. Lorthios, A.F. Gourgues, P. Cugy, and S. Sccot: In Proceedings of 12th International Conference of Fracture, Ottawa, 2009.

  20. V. Ra**ikanth, K. Mukherjee, S.G. Chowdhury, A. Schiebahn, A. Harms and W. Bleck: Sci. Techno. Weld. Join., 2013, vol. 18(6), pp. 485-91.

    CAS  Google Scholar 

  21. M. Daamen, O. Güvenç, M. Bambach, and G.Hirt: CIRP Ann. Manuf. Technol., 2014, vol. 63(1), pp. 265–68.

  22. P. Lan, H. Tang and J. Zhang: Metall. Mater. Trans. A, 2016, vol. 47(6), pp. 2964-84.

    Google Scholar 

  23. P. Lan and J. Zhang: Steel Res. Int., 2016, vol. 87(2), pp. 250-61.

    CAS  Google Scholar 

  24. P. Lan, H. Tang and J. Zhang: Mater. Sci. Eng. A, 2016, vol. 660, pp. 127-38.

    CAS  Google Scholar 

  25. W. Bleck, K. Phiu-on, C. Heering and G. Hirt: Steel Res. Int., 2007, vol. 78(7), pp. 536-45.

    CAS  Google Scholar 

  26. S.E. Kang, A. Tuling, J.R. Banerjee, W.W. Gunawardana and B. Mintz: Mater. Sci. Technol., 2011, vol. 27(1), pp. 95-100.

    CAS  Google Scholar 

  27. I.Mejía, A.E.Salas-Reyes, A.Bedolla-Jacuinde, J.Calvo and J.M.Cabrera: Mater. Sci. Eng. A, 2014, vol. 616, pp. 229-39.

    Google Scholar 

  28. A.E.Salas-Reyes, I.Mejía, A.Bedolla-Jacuinde, A. Boulaajaj, J.Calvo and J.M.Cabrera:. Mater. Sci. Eng. A, 2014, vol. 611, pp. 77-89.

    CAS  Google Scholar 

  29. I.Mejía, A.E.Salas-Reyes, J.Calvo and J.M.Cabrera: Mater. Sci. Eng. A, 2015, vol. 648, pp. 311-29.

    Google Scholar 

  30. J. Yang, Y.N. Wang, X.M. Ruan, R.Z. Wang, K. Zhu, Z.J. Fan, Y.C. Wang, C.B. Li and X.F. Jiang: Metall. Mater. Trans. B, 2015, vol.46(3), pp. 1365-75.

    Google Scholar 

  31. Y.N. Wang, J. Yang, R.Z. Wang, X.L. **n and L.Y. Xu: Metall. Mater. Trans. B, 2016, vol.47(3), pp. 1697-712.

    Google Scholar 

  32. H. Liu, J. Liu, B. Wu, Y. Shen, Y. He, H. Ding and X. Su: Mater. Sci. Eng. A, 2017, vol. 708, pp. 360-74.

    CAS  Google Scholar 

  33. T. Brune, D. Senk, R. Walpot and B. Steenken: Metall. Mater. Trans. B, 2015, vol. 46(3), pp. 1400-08.

    Google Scholar 

  34. B. Steenken, J.L.L. Rezende and D. Senk: Mater. Sci. Technol., 2017, vol.33(5), pp. 567-73.

    CAS  Google Scholar 

  35. M.H. Kwon, J.K. Kim, J. Bian, H. Mohrbacher, T. Song, S.K. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2018, vol. 49(11), pp. 5509-23.

    CAS  Google Scholar 

  36. F. Haakonsen: Optimizing of Strømhard Austenitic Manganese Steel. Ph.D. thesis, NTNU, Trondheim, Norway, 2009.

  37. L.N. Bartlett and B.R. Avila: Int. J. Metalcast., 2016, vol.10(4), pp. 401-20.

    CAS  Google Scholar 

  38. Y.U. Heo, S.Y. Lee, J.W. Cho and N.H. Heo: Mater. Charact., 2016, vol. 120, pp. 234-43.

    CAS  Google Scholar 

  39. Y. Ji, M.X. Zhang, and H. Ren: Metals, 2018, vol. 8(11), p. 884.

  40. H. Suito, H. Ohta and S. Morioka: ISIJ Int., 2006, vol. 46(6), pp. 840-6.

    CAS  Google Scholar 

  41. M. Ohno and K. Matsuura: ISIJ Int., 2008, vol. 48(10), pp. 1373-9.

    CAS  Google Scholar 

  42. S. Tsuchiya, M. Ohno and K. Matsuura: Acta Mater., 2012, vol. 60(6-7), pp. 2927-38.

    CAS  Google Scholar 

  43. A. Hunter and M. Ferry: Scripta Mater., 2002, vol. 46(4), pp. 253–58.

  44. A. Wagner, B.A. Shollock, and M. McLean: Mater. Sci. Eng. A, 2004, vol, 374(1–2), pp. 270–79.

  45. T. Ohashi, T. Hiromoto, H. Fujii, Y. Nuri and K. Asano: Tetsu-to-Hagané, 1976, vol. 62(6), pp. 614-23.

    CAS  Google Scholar 

  46. E.S. Dahle: Grain Refinement of High Alloyed Steel with Cerium Addition. MS thesis. NTNU, Norway, 2011.

  47. A. Vahed and D.A.R. Kay: Metall. Trans. B, 1976, vol. 7B, pp. 375–83.

  48. M. Guo and H. Suito: ISIJ Int., 1999, vol.39(7), pp. 678-86.

    CAS  Google Scholar 

  49. M. Guo and H. Suito: ISIJ Int.,1999, vol. 39(12), pp. 1297-303.

    CAS  Google Scholar 

  50. A.V. Karasev and H. Suito: ISIJ Int., 2008, vol. 48(5), pp. 658-66.

    CAS  Google Scholar 

  51. J. Lan, J. He, W. Ding and Y. Zhu: ISIJ Int., 2000, vol. 40(12), pp. 1275-82.

    CAS  Google Scholar 

  52. Q. Yang, X. Ren, B. Liao, M. Yao, and X. Wan: J. Rare Earths, 1999, vol. 17(4), pp. 293–97.

  53. F. Hao, B. Liao, D. Li, T. Dan, X. Ren, Q. Yang, and L. Liu: J. Rare Earths, 2011, vol. 29(6), pp. 609–13.

  54. J. Gao, P. Fu, H. Liu and D. Li: Metals, 2015, vol. 5(1), pp. 383-94.

    CAS  Google Scholar 

  55. B.L. Bramfitt: Metall. Trans., 1970, vol. 1(7), pp. 1987-95.

    CAS  Google Scholar 

  56. M.X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol.54(8), pp. 1101-70.

    CAS  Google Scholar 

  57. Y. Ji, L. Kang, Y. Song, W. Qu and H. Ren: Rare Metal Mater. Eng., 2017, vol. 46(10), pp. 2889-94.

    Google Scholar 

  58. Ø. Grong, L. Kolbeinsen, C. van Der Eijk and G. Tranell: ISIJ Int., 2006, vol.46(6), pp. 824-31.

    CAS  Google Scholar 

  59. C.Van Der Eijk, Ø. Grong, F. Haakonsen, L. Kolbeinsen and G. Tranell: ISIJ Int., 2009, vol. 49(7), pp. 1046-50.

    Google Scholar 

  60. G. Li, M. Lu, P. Lan, H. Tang, J. Zhi, and J. Zhang: J. Iron Steel Res., 2018, vol. 30(2), pp. 79–90.

  61. Y. Nuli, T. Ohashi, T. Hiromoto and O. Kitamura: Trans. ISIJ, 1982, vol. 22(6), pp. 399-407.

    Google Scholar 

  62. Y. Nuli, T. Ohashi, T. Hiromoto and O. Kitamura: Trans. ISIJ, 1982, vol. 22(6), pp. 408-16.

    Google Scholar 

  63. X. Zhong, H. Hu, and C. Liu: J. Univ. Sci. Technol. Bei**g, 1984, vol. 12(3), pp. 16–22.

  64. W. Kurz, D.J. Fisher. Fundamentals of Solidification (4thed.). Trans. Tech. Publications Ltd., Uetikon-Zuerich, Switzerland, 1998.

    Google Scholar 

  65. H. Hu, X. Zhong, Q. Han and L. Ma: Chinese Rare Earths, 1985, vol. 12(2), pp. 9-15.

    Google Scholar 

  66. R. Gao, X. Chen, and S. Liu: J. Univ. Sci. Technol. Bei**g, 1983, vol. 11(1), pp. 53–63.

  67. R. Zhu, Z. Chao, S. Li, Y. Lu, and S. Wang: J. Chin. Rare Earth Soc., 1997, vol. 15(3), pp. 234–38.

  68. H. Li, A. McLean, J.W. Rutter and I.D. Sommerville: Metall. Trans. B, 1988, vol.19(3), pp. 383-95.

    CAS  Google Scholar 

  69. T.Z. Kattamis: Trans. Metall. Soc. AIME, 1967, vol.239, pp. 1504-11.

    CAS  Google Scholar 

  70. S.C. Huang and M.E. Glicksman: Acta Metall., 1981, vol.29(5), pp. 717-34.

    CAS  Google Scholar 

  71. B. Li, H.D. Brody, and A. Kazimirov: Phys. Rev. E, 2004, vol. 70(6), p. 062602.

  72. N. Limodin, L. Salvo, E. Boller, M. Suery, M. Felberbaum, S. Gailliegue and K. Madi: Acta Mater., 2009, vol. 57(7), pp. 2300-10.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Natural Science Foundation of China (Grant No. 51604021, U1860111). The authors are grateful for the above financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Lan or Jiaquan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 7, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Lan, P., Zhang, J. et al. Refinement of the Solidification Structure of Austenitic Fe-Mn-C-Al TWIP Steel. Metall Mater Trans B 51, 452–466 (2020). https://doi.org/10.1007/s11663-020-01773-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01773-4

Navigation