Log in

Oxygen Potential of High-Titania Slag from the Smelting Process of Ilmenite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxygen potential of TiO2-FeO-Ti2O3 ternary slags was determined by the electromotive force (EMF) method based on the solid electrolyte oxygen sensor at 2003 K (1730 °C). The effect of FeO content and Ti3+/Ti4+ mass ratio on the oxygen potential of the high-titania slag was also studied. At a fixed Ti3+/Ti4+ mass ratio of 3.11, the oxygen potential increased with increasing FeO content. Increase of Ti3+/Ti4+ mass ratio from 2.29 to 3.60 caused a significant decrease in the oxygen potential of the slag. Comparing measured oxygen potential with the calculated values indicated that the oxygen potential of the slag might be determined by FeO/Fe equilibrium reaction rather than TiO2/Ti2O3 reaction. In addition, the experimentally measured oxygen potential values were modeled by multiple linear regression analysis, and a semi-empirical mathematical correlation was established between the oxygen potential and slag compositions. The iso-oxygen potential distribution diagram based on the mathematical model was obtained for the high-titania slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. G. Du and Z. P. Zhang, Iron Steel Vanadium Titanium, 1995, vol. 16, pp. 1-5.

    Google Scholar 

  2. K. Kiukkola and C. Wagner, Journal of the electrochemical society, 1957, vol. 104, pp. 308-316.

    Article  Google Scholar 

  3. B. Coletti, S. Smets, B. Blanpain, P. Wollants, J. Plessers, C. Vercruyssen and B. Gommers, Ironmaking & Steelmaking, 2003, vol. 30, pp. 217-222.

    Article  Google Scholar 

  4. M. Kawakami, K. S. Goto and M. Matsuoka, Metallurgical and Materials Transactions B, 1980, vol. 11, pp. 463-469.

    Article  Google Scholar 

  5. J. W. Matousek, Jom, 2013, vol. 65, pp. 1584-1588.

    Article  Google Scholar 

  6. K. Nagat and K. S. Goto, Solid State Ionics, 2006, vol. 9, pp. 1249-1256.

    Google Scholar 

  7. K. Nagata and K. S. Goto, Tetsu- to- Hagane, 2009, vol. 74, pp. 1801-1808.

    Article  Google Scholar 

  8. E. T. Turkdogan, Ironmaking & Steelmaking, 2013, vol. 27, pp. 32-36.

    Article  Google Scholar 

  9. O. Volkova, M. E. Vogel and D. Janke, Ironmaking & Steelmaking, 2003, vol. 30, pp. 287-292.

    Article  Google Scholar 

  10. K. Q. Huang, Q. G. Liu, Iron & Steel, 1991, vol. 26, pp. 68-72.

    Google Scholar 

  11. P. Geldenhuis, P. C. Pistorius. Journal of the Southern African Institute of Mining and Metallurgy, 1999, vol. 99, pp. 41-47.

    Google Scholar 

  12. J. Pesl and R. Hurman Eriç, Metallurgical and Materials Transactions B, 1999, vol. 30, pp. 695-705.

    Article  Google Scholar 

  13. K. Borowiec and T. Rosenqvist, Scandinavian Journal of Metallurgy, 1981, vol. 10, pp. 217-224.

    Google Scholar 

  14. S. K. Gupta, V. Rajakumar and P. Grieveson, Canadian Metallurgical Quarterly, 2013, vol. 28, pp. 331-335.

    Article  Google Scholar 

  15. R. R. Merritt and A. G. Turnbull, Journal of Solid State Chemistry, 1974, vol. 10, pp. 252-259.

    Article  Google Scholar 

  16. S. Itoh, O. Inoue and T. Azakami, Materials Transactions, JIM, 1998, vol. 39, pp. 391-398.

    Article  Google Scholar 

  17. L. A. Taylor, R. J. Williams and R. H. McCallister, Earth and Planetary Science Letters, 1972, vol. 16, pp. 282-288.

    Article  Google Scholar 

  18. H. Schmalzried, Berichte der Bunsengesellschaft für physikalische Chemie, 1962, vol. 66, pp. 572-576.

    Google Scholar 

  19. S. H. Liu, R. J. Fruehan, A. Morales and B. Ozturk, Metallurgical & Materials Transactions B, 2001, vol. 32, pp. 31-36.

    Article  Google Scholar 

  20. K. Hu, X. W. Lv, S. P. Li, W. Lv, B. Song and K. Han, Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 1963-1973.

    Article  Google Scholar 

  21. From Stian Seim: NTNU, PhD Thesis, 2011, pp. 271.

  22. G. Eriksson, A. D. Pelton, E. Woermann and A. Ender, Cheminform, 1997, vol. 100, pp. 1839-1849.

    Google Scholar 

  23. A. H. Webster and N. F. H. Bright, Journal of the American Ceramic Society, 2010, vol. 44, pp. 110-116.

    Article  Google Scholar 

  24. G. Tranell, O. Ostrovski and S. Jahanshahi, Metallurgical and Materials Transactions B, 2002, vol. 33, pp. 61-67.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Key R&D Program of China (2018YFC1900500). The chemical composition analysis of all the samples was performed by Panzhihua Iron and Steel Research Institute. The corresponding author prof. Xuewei Lv is especially grateful to prof. P. Christiaan Pistorius in Carnegie Mellon University for his constructive suggestions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Lv, X., Yan, Z. et al. Oxygen Potential of High-Titania Slag from the Smelting Process of Ilmenite. Metall Mater Trans B 50, 1841–1851 (2019). https://doi.org/10.1007/s11663-019-01585-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01585-1

Navigation