Log in

Characteristics of Slag Infiltration in High-Mn Steel Castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To determine the composition difference between the solid and liquid films in plant practice for high-Mn steel castings, a reaction experiment was carried out to investigate the composition profile of MnO and SiO2 in the slag layer. Based on the experimental results, a mathematical model of the mold slag for high-Mn steel was developed to describe the nonuniform infiltration behavior of mold slag during oscillation cycles. Moreover, the effects of uneven slag films on slab lubrication and heat transfer in the mold are discussed. The results show that the concentrations of MnO and SiO2 over the flux layer have an opposite stair-step distribution, which consists of a reaction layer and nonreaction layer. When the reaction layer thickness is 5 mm, a thicker liquid film is formed between the slab and the mold. The inhomogeneity of the composition in the solid film causes large fluctuations in the heat flux in the mold, resulting in irregular depressions on the shell surface. With a reacting thickness of 10 mm, the reacting slag fills in the gap to generate a thinner solid film, which increases the overall heat flux in the mold. Since mold oscillation combined with slag rim enhances the pressure flow in the vicinity of the meniscus, the liquid slag within 80 mm of the mold wall is mixed and consumed quickly. In contrast, the liquid slag beyond 80 mm from the mold wall with a low velocity stays longer in the liquid pool. The model predictions illuminate the characteristics of slag infiltration during high-Mn steel casting, showing good agreement with plant measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. J. Kim and J. H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 875-86.

    Article  Google Scholar 

  2. M. S. Kim, S. W. Lee, J. W. Cho, M. S. Park, H. G. Lee, and Y. B. Kang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 299-308.

    Article  Google Scholar 

  3. J. Yang and M. Zhu: ISIJ Int., 2016, vol. 56, pp. 2191-98.

    Article  Google Scholar 

  4. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Iron Steel Tech., 2011, vol. 8, pp. 231-40.

    Google Scholar 

  5. J. W. Cho, K. Blazek, M. Frazee, H. B. Yin, J. H. Park, and S. W. Moon: ISIJ Int., 2013, vol. 53, pp. 62-70.

    Article  Google Scholar 

  6. D. **ao, W. L. Wang and B. X. Lu: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 873-81.

    Article  Google Scholar 

  7. C. B. Shi, M. D. Seo, J. W. Cho and S. H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081-97.

    Article  Google Scholar 

  8. X. J. Fu, G. H. Wen, P. Tang, Q. Liu and Z. Y. Zhou: Ironmak. Steelmak., 2014, vol. 41, pp. 342-49.

    Article  Google Scholar 

  9. W. Yan, W. Q. Chen, Y. D. Yang, C. Lippold and A. Mclean: ISIJ Int., 2015, vol. 55, pp. 1000-09.

    Article  Google Scholar 

  10. K. C. Mills, A. B. Fox, Z. Li and R. P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26-34.

    Article  Google Scholar 

  11. Sridhar S, Mills KC, Afrange ODC, LÖrz HP, Carli R (2000) Ironmak. Steelmak. 27:238–42.

    Article  Google Scholar 

  12. H. J. Shin, S. H. Kim, B. G. Thomas, G. G. Lee, J. M. Park and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.

    Article  Google Scholar 

  13. R. Saraswat, A. B. Fox, K. C. Mills, P. D. Lee and B. Deo: Scand. J. Metall., 2004, vol. 33, pp. 85-91.

    Article  Google Scholar 

  14. P. E. Ramirez-Lopez, P. D. Lee, K. C. Mills and B. Santilana: ISIJ Int., 2010, vol. 50, pp. 1797-1804.

    Article  Google Scholar 

  15. T. Kajitani, K. Okazawa, W. Yamada and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 1432-41.

    Article  Google Scholar 

  16. A. Jonayat and B. G. Thomas: Metall. Meter. Trans. B, 2014, vol. 45B, pp. 1842-64.

    Article  Google Scholar 

  17. J. Yang, X. Meng, N. Wang and M. Zhu: Metall. Meter. Trans. B, 2017, vol. 48B, pp. 1230-47.

    Article  Google Scholar 

  18. P. D. Lee, P. E. Ramirez-Lopez, K. C. Mills and B. Santillana: Ironmak. Steelmak., 2012, vol. 39, pp. 244-53.

    Article  Google Scholar 

  19. J. Konishi, M. Militzer, J. K. Brimacombe and I. V. Samarasekera: Metall. Meter. Trans. B, 2002, vol. 33B, pp. 413-23.

    Article  Google Scholar 

  20. K. C. Mills and A. B. Fox: ISIJ Int., 2003, vol. 43, pp. 1479-86.

    Article  Google Scholar 

  21. Y. Meng and B. G. Thomas: Metall. Meter. Trans. B, 2003, vol. 34B, pp. 707-25.

    Article  Google Scholar 

  22. M. Hanao and M. Kawamoto: ISIJ Int., 2008, vol. 48, pp. 180-85.

    Article  Google Scholar 

  23. A. Badri, T. T. Natarajan, C. C. Snyder, K. D. Powers, F. J. Mannion, M. Byrne and A. W. Cramb: Metall. Meter. Trans. B, 2005, vol. 36B, pp. 373-83.

    Article  Google Scholar 

  24. Y. Meng and B. G. Thomas: ISIJ Int., 2006, vol. 46, pp. 660-69.

    Article  Google Scholar 

  25. J. Cho and H. Jeong: Metall. Meter. Trans. B, 2013, vol. 44B, pp. 146-53.

    Article  Google Scholar 

  26. P. E. Ramirez-Lopez, P. D. Lee and K. C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.

    Article  Google Scholar 

  27. J. Yang, Z. Cai and M. Zhu: ISIJ Int., 2018, vol. 58, pp. 299-308.

    Article  Google Scholar 

  28. X. Huang, B. G. Thomas and F. M. Najjar: Metall. Meter. Trans. B, 1992, vol. 23B, pp. 339-56.

    Article  Google Scholar 

  29. Y. Meng and B. G. Thomas: Metall. Meter. Trans. B, 2003, vol. 34B, pp. 685-705.

    Article  Google Scholar 

  30. A. C. Mikrovas, S. A. Argyropoulos and I. D. Sommerville: Iron Steelmaker, 1991, vol.18, pp. 51-61.

    Google Scholar 

  31. R. Eriksson and S. Seetharaman: Metall. Meter. Trans. B, 2004, vol. 35B, pp. 461-69.

    Article  Google Scholar 

  32. K. C. Mills: Southern African Pyrometallurgy 2011 Int. Conf., 2011, pp. 1-52.

  33. D. Ye and J. Hu: Handbook of Thermodynamic Data for Inorganic Materials, Metallurgical Industry Press, Bei**g, 2002.

    Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to the National Natural Science Foundation of China (Grant Numbers U1660204 and 51874060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang or Dengfu Chen.

Additional information

Manuscript submitted September 28, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Cai, Z., Chen, D. et al. Characteristics of Slag Infiltration in High-Mn Steel Castings. Metall Mater Trans B 50, 1104–1113 (2019). https://doi.org/10.1007/s11663-019-01511-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01511-5

Navigation