Log in

Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10−5 to 2.3 × 10−5 K−1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, and C. Kim: Inter. J. Plasticity, 2011, vol. 27, pp. 1485-511.

    Article  Google Scholar 

  2. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D. K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-702.

    Article  Google Scholar 

  3. Z.L. Mi, D. Tang, L. Yan, and J. Guo: Iron Steel, 2005, vol. 40, pp. 58-60.

    Google Scholar 

  4. H. Dong, W.Q. Cao, J. Shi, C.Y. Wang, and Y.Q. Wong: Iron Steel, 2011, vol. 46, pp. 1-11.

    Google Scholar 

  5. R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905-12.

    Article  Google Scholar 

  6. T. Furukawa, H. Huang, and O. Matsumura: Mater. Sci. Technol., 1994, vol. 10, pp. 964-70.

    Article  Google Scholar 

  7. H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621-6.

    Article  Google Scholar 

  8. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, and S. Peterson: Calphad, 2002, vol. 26, pp. 189-228.

    Article  Google Scholar 

  9. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Peterson: Calphad, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  10. Y.H. **ong, P.J. Li, A.M. Yang, W.D. Yan, D.B. Zeng, and L. Liu: Acta Metall. Sin., 2002, vol. 38, pp. 529-33.

    Google Scholar 

  11. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: J. Appl. Phys., 1961, vol. 32, pp. 1679-84.

    Article  Google Scholar 

  12. L.Q. Zhang, Y.P. Bao, M. Wang, Z. Peng, and R. Wang: J. Iron Steel Res., 2012, vol. 24, pp. 40-4.

    Google Scholar 

  13. D.S. Eppelsheimer, and R.R. Penman: Physica, 1950, vol. 16, pp. 792-4.

    Article  Google Scholar 

  14. H.Z. Qian, J.Q. Zhang, and L.X. Cui: J. Iron Steel Res., 2011, vol. 23, pp. 44–49, 62.

  15. S.R. Chen, H.A. Davies, and W.M. Rainforth: Acta Mater., 1999, vol. 47, pp. 4555-69.

    Article  Google Scholar 

  16. P.X. Fu, D.Z. Li, and Y.Y. Li: Foundry, 2009, vol. 58, pp. 1030–33, 1037.

  17. E. Chang, and L.J. Wang: Iron Steel, 2012, vol. 47, pp. 27-30.

    Google Scholar 

  18. S.H. Park, K.Y. Kim, Y.D. Lee, and C.G. Park: ISIJ Int., 2002, vol. 42, pp. 100-5.

    Article  Google Scholar 

  19. V.H. Schumann: Neue Hütte, 1972, vol. 17, pp. 605-9.

    Google Scholar 

  20. M. Takahashi: Ph.D. Thesis, University of Cambridge, Cambridge, U.K., 1992.

  21. S.J. Lee, M.T. Lusk, and Y.K. Lee: Acta Mater., 2007, vol. 55, pp. 875-82.

    Article  Google Scholar 

  22. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.

    Article  Google Scholar 

  23. B. Mintz and D.N. Crowther: Int. Mater. Rev., 2010, vol. 55, pp. 168-96.

    Article  Google Scholar 

  24. S.E. Kang, A. Tuling, J.R. Banerjee, W.D. Gunawardana, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 95-100.

    Article  Google Scholar 

  25. S.E. Kang, A. Tuling, I. Lau, J.R. Banerjee, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 909-15.

    Article  Google Scholar 

  26. B. Mintz, S. Yue, and J.J. Jonas: Int. Mater. Rev., 1991, vol. 36, pp. 187-220.

    Article  Google Scholar 

  27. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467, pp. 114-24.

    Article  Google Scholar 

  28. A.S. Hamada, and L.P. Karjalainen: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1819-27.

    Article  Google Scholar 

  29. H. Su, W.D. Gunawadarna, A. Tuling, and B. Mintz: Mater. Sci. Technol., 2007, vol. 23, pp. 1357-66.

    Article  Google Scholar 

  30. D.N. Crowther and B. Mintz: Mater. Sci. Technol., 1986, vol. 2, pp. 671-6.

    Article  Google Scholar 

  31. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833-55.

    Article  Google Scholar 

  32. B. Mintz, A. Tuling, and A. Delgado: Mater. Sci. Technol., 2003, vol. 19, pp. 1721-6.

    Article  Google Scholar 

  33. N. Kariya, N. Nakamura, and K. Seto: EP Patent No. 2103697, Sept. 23, 2009.

  34. F. Reyes, J. Calvo, J.M. Cabrera, and I. Mejía: Steel Res. Int., 2012, vol. 83, pp. 334-9.

    Article  Google Scholar 

  35. B.G. Thomas, J.K. Brimacombe, and I.V. Samarasekera: Iron Steel Soc. Trans., 1986, vol. 7, pp. 7-20.

    Google Scholar 

  36. Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, and Y. Ohmori: Mater. Sci. Technol., 1990, vol. 6, pp. 793-806.

    Article  Google Scholar 

  37. E.T. Turkdogan: AIME Steelmaking Conf. Proc., 1987, vol. 70, p. 399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Nan Wang.

Additional information

Manuscript submitted August 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, YN., Ruan, XM. et al. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels. Metall Mater Trans B 46, 1365–1375 (2015). https://doi.org/10.1007/s11663-015-0330-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0330-1

Keywords

Navigation