Log in

Sulfidation Kinetics of Natural Chromite Ore Using H2S Gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of natural chromite (FeCr2O4) sulfidation using 5 pct H2S (balance Ar) gas were studied in the temperature range 1173 K to 1473 K (900 °C to 1200 °C). Reaction products were examined using combined X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Results indicated the formation of an outer sulfide-rich layer comprising mixed (Fe,Cr)1−x S and (Cr,Fe)1−x S phases, underlain by a cation-depleted diffusion zone. The kinetics investigation indicated that the reaction rate increased with increasing temperature and that the sulfidation of chromite followed a shrinking unreacted core model. It is proposed that Cr3+ cation diffusion through the reaction product was the rate controlling step with an apparent activation energy of 166 ± 4 kJ mol−1. The calculated activation energy lies between the activation energy for Fe2+ and Cr3+ diffusion through pure chromite spinel and Fe-Cr alloy. Possible reasons for the discrepancy from pure chromite are expected to be the presence of minor Al and Mg in the natural chromite sample, and the partial pressure of oxygen under the reaction conditions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.W. Harben: The Industrial Minerals Handybook, 4th ed., IMIL, Surrey, UK, 2002, pp. 356–65.

  2. J. Nell and P. Den Hoed: Symp. Ser. S. Afr. Inst. Min. Metall., 1997, pp. 75–8.

  3. M.I. Pownceby, M.J. Fisher-White, C.M. MacRae, N.C. Wilson, and G.J. Sparrow: Fourth International Heavy Minerals Conference, Capetown, South Africa, 2003, pp. 175–84.

  4. M.I. Pownceby and M.J. Fisher-White (2006) Inst. Min Metall. C, 115: 213-223.

    Google Scholar 

  5. M.I. Pownceby: Aust. J. Earth Sci., 2010, vol. 57, pp. 243-258.

    Article  Google Scholar 

  6. M.I. Pownceby: Mineral. Mag., 2005, vol. 69(2), pp. 191-204.

    Article  Google Scholar 

  7. M.J. Fisher-White, D.E. Freeman, I.E. Grey, M.R. Lanyon, M.I. Pownceby and G.J. Sparrow: Trans. Inst. Min Metall. C, 2007, vol. 116(2), pp. 123-132.

    Google Scholar 

  8. M.I. Pownceby, D.E. Freeman, M.J. Fisher-White and W.J. Bruckard: Eighth International Heavy Minerals Conference, Perth, WA, 2011, pp. 251–62.

  9. R.G. Becher, R.G. Canning, B.A. Goodheart, and S. Uusna: Proc. Australas. Inst. Min. Metall., 1965, pp. 21–43.

  10. S. Ahmad, M.A. Rhamdhani., M.I. Pownceby and W.J. Bruckard (2014) Trans. Inst. Min. Metall. C, 123, pp. 165-177.

    Google Scholar 

  11. D.B. Rao, K. Jacob and H.G. Nelson: Metall. Mater. Trans. A, 1983, vol. 14(1), pp. 295-305.

    Article  Google Scholar 

  12. M.F. Pillis and L.V. Ramanathan: J. Therm. Anal. Calorim., 2002, vol. 67(2), pp. 391-396.

    Article  Google Scholar 

  13. A. Elgoresy, G. Kullerud (1969) Year Book, vol. 67. Washington: Carnegie Institution, pp. 182-187.

    Google Scholar 

  14. J. Szekely, J.W. Evans, and H.Y. Sohn: Gas-Solid Reactions, Academic Press, Inc., New York, NY, 1976, pp. 72-80.

    Google Scholar 

  15. O. Levenspiel (1999) Chemical Reaction Engineering, 3rd ed. Vol. 2. New York: Wiley, pp. 573-575.

    Google Scholar 

  16. W. Jander: Zeitschrift für Anorganische und Allgemeine Chemie, 1927, vol. 163(1): pp. 1-30.

    Article  Google Scholar 

  17. A. Ginstling and B. Brounshtein (1950) J. Appl. Chem. USSR, 23: pp. 1327-1338.

    Google Scholar 

  18. S. El-Tawil, I. Morsi, and A. Francis: Can. Metall. Q., 1993, vol. 32(4), pp. 281-288.

    Article  Google Scholar 

  19. J. Gilewicz-Wolter, Z. Żurek, J. Dudala, J. Lis, M. Homa and M. Wolter (2006) Adv. Sci. Technol. 46: 27-31.

    Article  Google Scholar 

  20. D.B. Rao and H.G. Nelson: Oxid. Met., 1978, vol. 12(2), pp. 111-138.

    Article  Google Scholar 

  21. S. Hallström, L. Höglund and J. Ågren: Acta Mater., 2011, vol. 59(1), pp. 53-60.

    Article  Google Scholar 

  22. J.-H. Lee, M. Martin and H.-I. Yoo: J. Phys. Chem. Solids, 2000, vol. 61(10), pp. 1597-1605.

    Article  Google Scholar 

  23. V.D. Tathavadkar, A. Jha and M. Antony: Metall. Mater. Trans. B, 2003, vol. 34(5), pp. 555-563.

    Article  Google Scholar 

  24. R. Sun: J. Chem. Phys., 1958, vol. 28(2), pp. 290-293.

    Article  Google Scholar 

  25. A. Miszczyk and K. Darowicki: Anti-Corros. Methods Mater., 2011, vol. 58(1), pp. 13-21.

    Article  Google Scholar 

  26. T. Narita and K. Nishida: Trans. Jpn. Inst. Met., 1973, vol. 14(6), pp. 439-446.

    Article  Google Scholar 

  27. R. Padilla, E. Olivares, M. Ruiz and H. Sohn: Metall. Mater. Trans. B, 2003, vol. 34(1), pp. 61-68.

    Article  Google Scholar 

  28. T. Narita, T. Ishikawa, and K. Nishida: Oxid. Met., 1987, vol. 27(3): pp. 239-252.

    Article  Google Scholar 

  29. M. Schulte, A. Rahmel and M. Schutze: Oxid. Met., 1998, vol. 49(1-2), pp. 33-70.

    Article  Google Scholar 

  30. R. Condit, R. Hobbins, C. Birchenall: Oxid. Met., 1974, vol. 8(6), pp. 409-455.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from Swinburne University of Technology and CSIRO Minerals Resources Flagship for this research project. We also acknowledge the invaluable assistance provided by Cameron Davidson (CSIRO) in sample preparation and Matt Glenn (CSIRO) for guidance in operation of the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sazzad Ahmad.

Additional information

Manuscript submitted August 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Rhamdhani, M.A., Pownceby, M.I. et al. Sulfidation Kinetics of Natural Chromite Ore Using H2S Gas. Metall Mater Trans B 46, 557–567 (2015). https://doi.org/10.1007/s11663-014-0278-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0278-6

Keywords

Navigation