Log in

Effects of Heat Treatment and Plating Sequence on Microstructure Evolution and Corrosion Properties of Mechanically Plated Zinc-Tin Coatings

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Steel fasteners were mechanically plated with different deposition sequence of Zn and Sn and heat treated at 340 °C for 30 min. After heat treatment and irrespective of the plating sequence, a dense iron-zinc (Fe-Zn)-rich interfacial layer was formed adjacent to the substrate while the outer coating layer was Sn-rich and appeared more porous. Energy-dispersive x-ray spectroscopy (EDS) and x-ray diffractometry (XRD) analyses confirmed the presence of ζ-FeZn13, δ1p-FeZn10, δ1k-FeZn7, and Γ-Fe3Zn10 phases within the interfacial layer. Post-mechanical plating heat treatment was diffusion controlled, with Fe and Zn atoms diffusing in opposite direction, but the process was dominated by the diffusion of Zn toward the steel substrate, and this was facilitated by Sn. Microhardness test indicated that the hardness of steel substrate was not affected by post-mechanical plating heat treatment. Cyclic salt spray testing showed that the heat-treated coatings exhibited better corrosion resistance (in terms of red rust appearance) despite the presence of porosity. In the early stage of corrosion, Zn at the Sn-rich outer layer dissolved preferentially, followed by the dissolution of Sn. When the anodic reaction at the outer layer approached the Fe-Zn intermetallic layer, the anodic site changed to the Fe-Zn layer. The Fe-Zn intermetallic layer acted as an effective barrier to the corrosion of underlying steel substrate because Zn from Fe-Zn layer dissolved slower than pure Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F.C. Campbell, In Joining - Understanding the Basics, ASM International: 2011, pp 207–41.

  2. A. Weber: Assembly, 2013, vol. 56, pp. 30–33.

    Google Scholar 

  3. P.P. Chung, J. Wang, and Y. Durandet: Friction, 2019, vol. 7, pp. 389–416.

    Article  CAS  Google Scholar 

  4. R. Garcia and J. Barboza, International Mobility Technology Conference & Exhibit Sao Paulo, Brazil 1999, 1999-01-3072.

  5. L. Zeng, E. Monserratt, L. Haylock, R. Gurrola, D. Youngblood, C.J. Brown and M.W. Smith, Aerospace Manufacturing and Automated Fastening Conference & Exhibition Toulouse, France 2006, 2006-01-3169.

  6. M.W. Ingle, In ASM Handbook, Volume 05 - Surface Engineering, ed. C.M. Cotell, J.A. Sprague and F.A. Smidt, ASM International: Ohio, 1994, pp 925–29.

  7. G.D. Wilcox and D.R. Gabe: Corros. Sci., 1993, vol. 35, pp. 1251–58.

    Article  CAS  Google Scholar 

  8. E. Budman and D. Stevens: Anti-Corros. Methods Mater., 1998, vol. 45, pp. 327–32.

    Article  CAS  Google Scholar 

  9. A. Chrysanthou: in A. S.-P. Riveting, ed., Woodhead Publishing, Chrysanthou and X. Sun, 2014, pp. 41–55.

    Google Scholar 

  10. K. Wang, H. Pickering, and K. Weil: Plat. Surf. Finish., 2002, vol. 89, pp. 80–83.

    Google Scholar 

  11. A. Pratap Singh, A. Gupta, K. Sai Jyotheender, and C. Srivastava: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 2743–53.

    Article  Google Scholar 

  12. W. Kuehnl, D. Mauer and R. Opper, U.S. Patent 6,308,544, 2001.

  13. O. Ashiru and J. Shirokoff: Appl. Surf. Sci., 1996, vol. 103, pp. 159–69.

    Article  CAS  Google Scholar 

  14. S. Dubent, M.L.A.D. Mertens, and M. Saurat: Mater. Chem. Phys., 2010, vol. 120, pp. 371–80.

    Article  CAS  Google Scholar 

  15. A.-C. Anonymous: Methods Mater., 1978, vol. 25, pp. 8–9.

    Google Scholar 

  16. Anonymous, Prod. Eng. (London) 1982, vol. 61, pp. 39–41.

  17. E.H. Lyons: in F.A. Lowenheim. M. Electroplating, ed., Wiley, New York, 1974, pp. 31–36.

    Google Scholar 

  18. R.A. Cottis: Shreir’s Corrosion, Elsevier, Oxford, 2010, pp. 902–22.

    Book  Google Scholar 

  19. ASTM B850, ASTM International, 2015.

  20. ASTM F1941, ASTM International, 2015.

  21. ASTM F2329, ASTM International, 2015.

  22. R.B. Rebak, L. Much**, and Z. Szklarska-Smialowska: Corrosion, 1997, vol. 53, pp. 481–88.

    Article  CAS  Google Scholar 

  23. M.T. Ferraz and M. Oliveira: Ciência Tecnol. Mater., 2008, vol. 20, pp. 128–33.

    Google Scholar 

  24. S.A. Brown and E. Berman, Naval Air Warfare Center Aircraft Divison Patuxent River, MD, 2011.

  25. L. Coch: Prod. Finish. (Cincinnati), 1987, vol. 51, pp. 56–62.

    Google Scholar 

  26. M. Golben, U.S. Patent 3,400,012, 1968.

  27. A. Satow, In ASM Handbook, Volume 05 - Surface Engineering, ed. C.M. Cotell, J.A. Sprague and F.A. Smidt, ASM International: Ohio, 1994, pp 330–32.

  28. G.M. Allison: Met. Finish., 2002, vol. 100(Supplement 1), pp. 384–93.

    Article  Google Scholar 

  29. J.F. Moore: J. Mech. Work. Technol., 1984, vol. 10, pp. 243–45.

    Article  Google Scholar 

  30. P.C. Wynn and J. Timms: Prod. Finish. (Cincinnati), 2001, vol. 66, pp. 74–79.

    Google Scholar 

  31. P.C. Cook, S.N. Cook and M.T. Murray, U.S. Patent 9,885,103, 2018.

  32. P.P. Chung, M. Esfahani, J. Wang, P. Cook, and Y. Durandet: Surf. Coat. Technol., 2019, vol. 377, 124916.

    Article  CAS  Google Scholar 

  33. P.P. Chung, P. Cook, J. Wang and Y. Durandet, Corrosion and Prevention 2018 Adelaide, Australia 2018, Paper 54.

  34. S. Wang, M. He, X. Zhao, Z. Peng, and L. Liu: Chin. J. Mech. Eng., 2009, vol. 22, pp. 608–13.

    Article  Google Scholar 

  35. L. Elias and A.C. Hegde, In A Treatise on Corrosion Science, Engineering and Technology, ed. U. Kamachi Mudali, T. Subba Rao, S. Ningshen, R. G. Pillai, R. P. George and T.M. Sridhar, Springer: Singapore, 2022, pp 579–90.

  36. M. Kalantary, G. Wilcox, and D. Gabe: Br. Corros. J., 1998, vol. 33, pp. 197–201.

    Article  CAS  Google Scholar 

  37. J.-Y. Fei and G. Wilcox: Surf. Coat. Technol., 2006, vol. 200, pp. 3533–39.

    Article  CAS  Google Scholar 

  38. J. Fei, G. Liang, W. **n, and J. Liu: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2006, vol. 21, pp. 40–44.

    Article  CAS  Google Scholar 

  39. R.S. Bhat, K. Venkatakrishna, J. Nayak, and A. Chitharanjan Hegde: J. Mater. Eng. Perform., 2020, vol. 29, pp. 6363–71.

    Article  CAS  Google Scholar 

  40. K. Venkatakrishna and A.C. Hegde: Mater. Manuf. Process., 2011, vol. 26, pp. 29–36.

    Article  CAS  Google Scholar 

  41. R.S. Bhat, In Liquid Metals, Intech Open: 2021.

  42. J. Zhang, C. Gu, and J. Tu: Surf. Coat. Technol., 2017, vol. 320, pp. 640–47.

    Article  CAS  Google Scholar 

  43. Z. Li, S. Wang, J. Li, X. Zhao, G. Zhang, and M. He: **shu Rechuli, 2018, vol. 43, pp. 68–71.

    CAS  Google Scholar 

  44. L. Zhu, W. Li, and D. Shan: Surf. Coat. Technol., 2006, vol. 201, pp. 2768–75.

    Article  CAS  Google Scholar 

  45. AS 3566.2, Standards Australia, 2002.

  46. AS 1817.1, Standards Australia, 2003.

  47. AS 2331.3.13, Standards Australia, 2006.

  48. B.P. Burton and P. Perrot, In ASM Handbook, Volume 03 - Alloy Phase Diagrams, ed. H. Baker and H. Okamoto, ASM International: Ohio, 1992, p 2.206.

  49. N.L. Okamoto, A. Yasuhara, and H. Inui: Acta Mater., 2014, vol. 81, pp. 345–57.

    Article  CAS  Google Scholar 

  50. M. Onishi, Y. Wakamatsu, and H. Miura: Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 331–37.

    Article  CAS  Google Scholar 

  51. P. Gellings, E. Bree, and G. Gierman: Int. J. Mater. Res., 1979, vol. 70, pp. 312–14.

    Article  CAS  Google Scholar 

  52. S. Wienströer, M. Fransen, H. Mittelstädt, C. Nazikkol, and M. Völker: Inter. Centre Diffr. Data, 2003, vol. 46, pp. 291–96.

    Google Scholar 

  53. N.L. Okamoto, M. Inomoto, H. Takebayashi, and H. Inui: J. Alloys Compd., 2018, vol. 732, pp. 52–63.

    Article  CAS  Google Scholar 

  54. G. Mandal, S.K. Das, R. Balasubramaniam, and S. Mehrotra: Mater. Sci. Technol., 2011, vol. 27, pp. 1265–70.

    Article  CAS  Google Scholar 

  55. R. Kainuma and K. Ishida: Tetsu-to-Hagane, 2005, vol. 91, pp. 349–55.

    Article  CAS  Google Scholar 

  56. Syahbuddin, P.R. Munroe and B. Gleeson, Mater. Sci. Eng. A 1999, vol. 264, pp. 201–09.

  57. M. Blumenau, M. Norden, F. Friedel, and K. Peters: Steel Res. Int., 2010, vol. 81, pp. 1125–36.

    Article  CAS  Google Scholar 

  58. G.F. Vander Voort, In ASM Handbook, Volume 09 - Metallography and Microstructures, ASM International: 2004, pp 627–43.

  59. J.R. Davis, In Surface Hardening of Steels - Understanding the Basics, ed. J.R. Davis, ASM International: 2002, pp 17–90.

  60. M. Fleischer, L.J. Cabri, G.Y. Chao, J.A. Mandarino, and A. Pabst: Am. Mineral., 1982, vol. 67, pp. 1074–82.

    CAS  Google Scholar 

  61. J. Zeng, M. **n, K. Li, H. Wang, H. Yan, and W. Zhang: J. Phys. Chem. C, 2008, vol. 112, pp. 4159–67.

    Article  CAS  Google Scholar 

  62. Y. Zhang, M. Guo, M. Zhang, C. Yang, T. Ma, and X. Wang: J. Cryst. Growth, 2007, vol. 308, pp. 99–104.

    Article  CAS  Google Scholar 

  63. T.E. Graedel: J. Electrochem. Soc., 1989, vol. 136, pp. 193C-203C.

    Article  CAS  Google Scholar 

  64. J. Perkins and R. Bornholdt: Corros. Sci., 1977, vol. 17, pp. 377–84.

    Article  CAS  Google Scholar 

  65. K.H. Choi, G.U. Siddiqui, B.-S. Yang, and M. Mustafa: J. Mater. Sci.: Mater. Electron., 2015, vol. 26, pp. 5690–96.

    CAS  Google Scholar 

  66. D. Thierry, D. Massinon, and A. Hugot-Le-Goff: J. Electrochem. Soc., 1991, vol. 138, pp. 879–80.

    Article  CAS  Google Scholar 

  67. J. Geurts, S. Rau, W. Richter, and F. Schmitte: Thin Solid Films, 1984, vol. 121, pp. 217–25.

    Article  CAS  Google Scholar 

  68. P. Colomban, In New Trends and Developments in Automotive System Engineering, ed. M. Chiaberge, InTech: 2011, pp~567–84.

  69. P. Colomban, S. Cherifi, and G. Despert: J. Raman Spectrosc., 2008, vol. 39, pp. 881–86.

    Article  CAS  Google Scholar 

  70. D.L.A. de Faria, S. Venâncio Silva, and M.T. de Oliveira: J. Raman Spectrosc., 1997, vol. 28, pp. 873–78.

    Article  Google Scholar 

  71. C.S. Lin, M. Meshii, and C.C. Cheng: ISIJ Int., 1995, vol. 35, pp. 503–11.

    Article  CAS  Google Scholar 

  72. C.S. Lin, M. Meshii, and C.C. Cheng: ISIJ Int., 1995, vol. 35, pp. 494–502.

    Article  CAS  Google Scholar 

  73. C. Ma and R. Swalin: Acta Metall., 1960, vol. 8, pp. 388–95.

    Article  CAS  Google Scholar 

  74. J. Cahoon, Y. Jiao, K. Tandon, and M. Chaturvedi: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 325–32.

    Article  CAS  Google Scholar 

  75. W.F. Hosford: Physical Metallurgy, Taylor and Francis, Boca Raton, FL, 2010.

    Book  Google Scholar 

  76. K.H. Kumar, P. Wollants, and L. Delaey: Calphad, 1996, vol. 20, pp. 139–49.

    Article  Google Scholar 

  77. G. Reumont, P. Perrot, J. Fiorani, and J. Hertz: J. Phase Equilib., 2000, vol. 21, pp. 371–78.

    Article  CAS  Google Scholar 

  78. J.A. van Beek, S.A. Stolk, and F.J. van Loo: Z. Metallkd., 1982, vol. 73, pp. 439–44.

    Google Scholar 

  79. A.P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, and T. Tsuru: Corros. Sci., 2007, vol. 49, pp. 3716–31.

    Article  CAS  Google Scholar 

  80. A. Riyas and S. Shibli: Appl. Surf. Sci., 2019, vol. 481, pp. 972–86.

    Article  CAS  Google Scholar 

  81. J.R. Davis, In Corrosion - Understanding the Basics, ed. J.R. Davis, ASM International: Ohio, 2000, pp 363–406.

  82. M. Bernard, A. Hugot-Le Goff, and N. Phillips: J. Electrochem. Soc., 1995, vol. 142, pp. 2162–67.

    Article  CAS  Google Scholar 

  83. A.P. Yadav, A. Nishikata, and T. Tsuru: Corros. Sci., 2004, vol. 46, pp. 361–76.

    Article  CAS  Google Scholar 

  84. M. Morcillo, R. Barajas, S. Feliu, and J.M. Bastidas: J. Mater. Sci., 1990, vol. 25, pp. 2441–46.

    Article  CAS  Google Scholar 

  85. H. Marchebois, S. Joiret, C. Savall, J. Bernard, and S. Touzain: Surf. Coat. Technol., 2002, vol. 157, pp. 151–61.

    Article  CAS  Google Scholar 

  86. A. Kalendová: Prog. Org. Coat., 2003, vol. 46, pp. 324–32.

    Article  Google Scholar 

  87. B. Ramezanzadeh, S. Arman, and M. Mehdipour: J. Coat. Technol. Res., 2014, vol. 11, pp. 727–37.

    Article  CAS  Google Scholar 

  88. J. Bajat, V. Mišković-Stanković, M. Maksimović, D. Dražić, and S. Zec: Electrochim. Acta, 2002, vol. 47, pp. 4101–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Swinburne University Postgraduate Research Award (SUPRA) scholarship program, and a Higher Degree Research Publications Award from the Faculty of Science, Engineering and Technology. We are grateful to Mr. Peter Cook and Kwik-Coat (Aust) Pty Ltd for the access to materials, coating facilities, and testing equipment. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Durandet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, P.P., Wang, J. & Durandet, Y. Effects of Heat Treatment and Plating Sequence on Microstructure Evolution and Corrosion Properties of Mechanically Plated Zinc-Tin Coatings. Metall Mater Trans A 54, 791–807 (2023). https://doi.org/10.1007/s11661-022-06920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06920-x

Navigation