Log in

Investigating the Effects of Dendrite Evolution on Microsegregation in Al–Cu Alloys by Coupling Experiments, Micro-modeling, and Phase-Field Simulations

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microsegregation that occurs in Al–Cu alloys during solidification processes was quantitatively characterized using Electron Probe Micro-Analysis (EPMA) and examined by analytical micro-models of microsegregation as well as phase-field simulations. The analysis of EPMA data showed a pronounced increase in microsegregation of Cu solute at low and intermediate solid fractions during directional solidification. This initial increase of solute concentration in the solid cannot be readily explained by any conventional analytical models. In this study, the effect of dendritic evolution on microsegregation was systematically investigated, and the observed increase in Cu solute can be predicted by a comprehensive micro-model developed in this study. This micro-model considers constitutional undercooling, back diffusion, and the dendrite remelting that can occur during solidification. A semi-empirical prefactor that accounts for dendrite remelting was mathematically derived and was determined to be key to capturing the initial increase of solute concentration. The model further indicates that the influence of dendrite remelting continually increases until solid fractions of approximately 50 pct are reached after which the influence of dendrite remelting declines. The comprehensive micro-model is analytical and straightforward to implement. It is able to accurately predict the solute microsegregation behavior observed under a variety of solidification conditions. In addition, the microsegregation and dendrite morphology evolution were simulated using a quantitative phase-field model for binary alloy solidification, implemented as a new application within the open-source PRISMS-PF phase-field framework. This application was used to simulate solidification of Al–Cu alloys in 2D and 3D. The combined experimental and theoretical study demonstrated that microsegregation can be significantly influenced by dendritic evolution, especially at low cooling rates under conditions that promote columnar growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The experimental data supporting this publication are available on the Materials Commons at https://doi.org/10.13011/m3-068f-a233.

Code Availability

PRISMS-PF is an open-source computer code available for download at https://github.com/prisms-center/phaseField. A written tutorial is available in the GitHub repository.

Abbreviations

\(X_{{\text{s}}}\) :

Size of the solid phase

\(C_{{\text{l}}}^{*}\) :

Solute concentration at the liquid side of solid/liquid interface

\(C_{0}\) :

Bulk composition of the sample

\(A\) :

Degree of constitutional undercooling at dendrite tip

\(\Omega\) :

Degree of back diffusion in solid

\(k_{{\text{v}}}\) :

Velocity-dependent partition coefficient

\(f_{{\text{s}}}\) :

Solid fraction

\(\lambda\) :

Secondary dendrite arm spacing (SDAS)

\(\lambda_{{\text{f}}}\) :

Finial SDAS

\(\lambda_{0}\) :

Initial SDAS

\(L\) :

Product of cooling rate and liquidus slope

\(K\) :

Growth rate coefficient for the average SDAS

\(n\) :

Exponent for the coarsening of the average SDAS

\({\text{Pe}}\) :

Péclet number

\(R\) :

Tip radius

\(v\) :

Solidification front velocity

\(D_{{\text{l}}}\) :

Solute diffusion coefficient in liquid

\({\text{Iv}}\) :

Ivantsov integration

\(G\) :

Thermal gradient

\(x\) :

Position in the x-direction in the simulation

\(V_{{\text{p}}}\) :

Pulling velocity

\(t\) :

System solidification time

\(\widetilde{{V_{{\text{p}}} }}\) :

Dimensionless velocity

\(\widetilde{{l_{{\text{T}}} }}\) :

Dimensionless thermal length

\(\tilde{t}\) :

Dimensionless time

\(\tilde{y}\) :

Dimensionless position in the y-direction

References

  1. J.A. Sarreal and G.J. Abbaschian: Metall. Trans. A, 1986, vol. 17, pp. 2063–73.

    Article  Google Scholar 

  2. J.F. Grandfield, D.G. Eskin, and I.F. Bainbridge: Direct-Chill Casting of Light Alloys, 2013.

  3. Q. Du, D.G. Eskin, A. Jascot, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 1523–32.

    Article  CAS  Google Scholar 

  4. G. Kasperovich, T. Volkmann, L. Ratke, and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1183–91.

    Article  CAS  Google Scholar 

  5. E.C. Kurum, H.B. Dong, and J.D. Hunt: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3103–10.

    Article  CAS  Google Scholar 

  6. J.L. Murray: Int. Met. Rev., 1985, vol. 30, pp. 211–33.

    Article  CAS  Google Scholar 

  7. X. Yan, S. Chen, F. **e, and Y.A. Chang: Acta Mater., 2002, vol. 50, pp. 2199–2207.

    Article  CAS  Google Scholar 

  8. M. Ohno, M. Yamashita, and K. Matsuura: Int. J. Heat Mass Transf., 2019, vol. 132, pp. 1004–07.

    Article  CAS  Google Scholar 

  9. E. Scheil: Zeitschrift Metallkde, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  10. H.D. Brody and M.C. Flemings: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  11. T.W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Article  Google Scholar 

  12. B. Giovanola and W. Kurz: Metall. Trans. A, 1990, vol. 21, pp. 260–63.

    Article  Google Scholar 

  13. M.J. Aziz: J. Appl. Phys., 1982, vol. 53, pp. 1158–68.

    Article  CAS  Google Scholar 

  14. Y.-J. Liang, X. Cheng, and H.-M. Wang: Acta Mater., 2016, vol. 118, pp. 17–27.

    Article  CAS  Google Scholar 

  15. Y.H. Shin, M.S. Kim, K.S. Oh, E.P. Yoon, and C.P. Hong: ISIJ Int., 2001, vol. 41, pp. 158–63.

    Article  CAS  Google Scholar 

  16. L. Nastac and D.M. Stefanescu: Metall. Trans. A, 1993, vol. 24, pp. 2107–18.

    Article  Google Scholar 

  17. A. Mortensen: Metall. Trans. A, 1989, vol. 20, pp. 247–53.

    Article  Google Scholar 

  18. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3016–19.

    Article  CAS  Google Scholar 

  19. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2183–89.

    Article  CAS  Google Scholar 

  20. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  21. J.S. Langer: Directions in Condensed Matter Physics, 1986, pp. 165–86.

  22. R. Kobayashi: Physica D, 1993, vol. 63, pp. 410–23.

    Article  Google Scholar 

  23. R. Kobayashi: Exp. Math., 1994, vol. 3, pp. 59–81.

    Article  Google Scholar 

  24. J.C. Ramirez, C. Beckermann, A. Karma, and H.J. Diepers: Phys. Rev. E, 2004, vol. 69, p. 16.

    Article  Google Scholar 

  25. A. Karma: Phys. Rev. Lett., 2001, vol. 87, pp. 115701-1–15701-4.

    Google Scholar 

  26. B. Echebarria, R. Folch, A. Karma, and M. Plapp: Phys. Rev. E, 2004, vol. 70, p. 22.

    Article  Google Scholar 

  27. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 163–94.

    Article  CAS  Google Scholar 

  28. B. Nestler, H. Garcke, and B. Stinner: Phys. Rev. E, 2005, vol. 71, p. 041609.

    Article  Google Scholar 

  29. D. Montiel, L. Liu, L. **ao, Y. Zhou, and N. Provatas: Acta Mater., 2012, vol. 60, pp. 5925–32.

    Article  CAS  Google Scholar 

  30. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.

    Article  CAS  Google Scholar 

  31. A. Farzadi, M. Do-Quang, S. Serajzadeh, A.H. Kokabi, and G. Amberg: Modell. Simul. Mater. Sci. Eng., 2008, vol. 16, p. 065005. https://doi.org/10.1088/0965-0393/16/6/065005.

    Article  CAS  Google Scholar 

  32. H. Neumann-Heyme, K. Eckert, and C. Beckermann: Acta Mater., 2017, vol. 140, pp. 87–96.

    Article  CAS  Google Scholar 

  33. M. Ohno and K. Matsuura: Phys. Rev. E, 2009, vol. 79, p. 031603. https://doi.org/10.1103/PhysRevE.79.031603.

    Article  CAS  Google Scholar 

  34. M. Ohno: Phys. Rev. E, 2012, vol. 86, p. 51603.

    Article  Google Scholar 

  35. S. DeWitt, S. Rudraraju, D. Montiel, W.B. Andrews, and K. Thornton: npj Comput. Mater., 2020, vol. 6, pp. 1–2.

    Article  Google Scholar 

  36. Z. Yao, Y. Huo, M. Li, et al.: Metall. Mater. Trans. A, 2022, https://doi.org/10.1007/s11661-022-06669-3.

    Article  Google Scholar 

  37. M. Ganesan, D. Dye, and P.D. Lee: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2191–2204.

    Article  CAS  Google Scholar 

  38. M. Ganesan, L. Thuinet, D. Dye, and P.D. Lee: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 557–66.

    Article  CAS  Google Scholar 

  39. K.P. Young and D.H. Kerkwood: Metall. Trans. A, 1975, vol. 6, pp. 197–205.

    Article  CAS  Google Scholar 

  40. G. Horvay and J.W. Cahn: Acta Metall., 1961, vol. 9, pp. 695–705.

    Article  CAS  Google Scholar 

  41. J.G. Charney, R. FjÖrtoft, and J. Von Neumann: Tellus, 1950, vol. 2, pp. 237–54.

    Article  Google Scholar 

  42. D. Montiel and Z. Yao: PRISMS-PF AlloySolidification Documentation, 2021.

  43. Z. Yao: PhD Disssertation, University of Michigan-Ann Arbor, 2021.

  44. B.B. Rath: Mater. Sci. Eng. B, 1995, vol. 32, pp. 101–06.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with appreciation helpful discussions with and suggestions of Professor Katsuyo Thornton from University of Michigan. ZY and JA acknowledge financial assistance from Ford Motor Co. We are grateful for the assistance of Yang Huo and Larry Godlewski in preparing the cast plates and Mei Li (Ford Motor Co) for helpful discussions. DM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0008637 as part of the Center for PRedictive Integrated Structural Materials Science (PRISMS Center) at University of Michigan. Computational resources and services were provided by the Extreme Science and Engineering Discovery Environment (XSEDE) through allocations TG-DMR110007 and TG-MSS160003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjie Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Montiel, D. & Allison, J. Investigating the Effects of Dendrite Evolution on Microsegregation in Al–Cu Alloys by Coupling Experiments, Micro-modeling, and Phase-Field Simulations. Metall Mater Trans A 53, 3341–3356 (2022). https://doi.org/10.1007/s11661-022-06748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06748-5

Navigation