Log in

Effect of Isothermal Heat Treatment at 760 °C on the Oxidation Behavior of Ti-Al-Zr Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study reports the oxidation behavior of an alpha titanium alloy, Ti-Al-Zr. The alloy was isothermally heat-treated in the air at 760 °C for durations up to 700 hours. Heat treatment led to the formation of an oxide layer on the surface and an alpha case beneath the oxide layer. The oxide and the alpha case were characterized by optical microscopy, micro-hardness measurement, scanning electron microscopy (SEM), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The oxide was predominantly rutile; however, other metal oxides were also present. An oxide growth mechanism has been proposed. An alpha case of a maximum depth of 646 μm was measured for the specimen exposed for 700 hours. The diffusion coefficient of oxygen in the metal matrix was calculated to be 8.83 × 10−14 m2/s. The alpha case formation led to straining of the matrix because of oxygen dissolution. Micro-strain was calculated from XRD measurements using the “Modified Williamson–Hall (Modified W–H)” method. A maximum micro-strain of 0.37 pct was calculated for the prismatic plane (110) for a 72 hours exposed specimen. A decreasing trend in the micro-strain value with increasing exposure time has been reported and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] Gerd Lütjering and James C.Williams: Titanium, 2nd ed., Springer, New York, 2017, pp. 50-51.

    Google Scholar 

  2. C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, Weinheim, 200, p. 198

  3. [3] K.S. Chan, M. Koike, B.W. Johnson and T. Okabe: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 171–180.

    CAS  Google Scholar 

  4. [4] S.Y. Sung and Y.J. Kim: Mater. Sci. Eng. A, 2005, vol. 405, pp. 173–177.

    Google Scholar 

  5. [5] X. Chamorro, N. Herrero-Dorca, P.P. Rodríguez, U. Andrés and Z. Azpilgain: J. Mater. Process. Technol., 2017, vol. 243, pp.75–81.

    CAS  Google Scholar 

  6. [6] D. Jordan: Heat Treating Prog., 2008, vol. 8, pp. 45–47.

    CAS  Google Scholar 

  7. [7] L. Bendersky and A. Rosen: Eng. Fract. Mech., 1980, vol.13, pp.111–118.

    CAS  Google Scholar 

  8. [8] C. Leyens, M. Peters, D.Weinem and W.A. Kaysser: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1709–1717.

    CAS  Google Scholar 

  9. [9] R.W. Evans, R.J. Hull and B. Wilshire: J. Mater. Process. Technol., 1996, vol. 56, pp. 492–501.

    Google Scholar 

  10. [10] R. Gaddam, M.L. Antti and R. Pederson: Mater. Sci. Eng. A, 2014, vol. 599, pp. 51–56.

    CAS  Google Scholar 

  11. [11] W. Jia, W. Zeng, X. Zhang, Y. Zhou, J. Liu and Q. Wang: J. Mater. Sci., 2011, vol. 46, pp.1351–1358.

    CAS  Google Scholar 

  12. [12]P. Kofstad, P. B. Anderson and O. J. Krudtaa: J. Le. Common Met., 1961,vol.3, pp.89-97

    CAS  Google Scholar 

  13. [13] P. Kofstad: J. Le. Common Met.,1967, vol.12, pp. 449-464.

    CAS  Google Scholar 

  14. [14] J. E. L. Gomes and A. M. Huntzt: Oxid. Met., 1980, vol. 14, pp. 249-261.

    CAS  Google Scholar 

  15. [15] J. E. L. Gomes and A. M. Huntzt: Oxid. Met., 1980, vol.14, pp. 471-497.

    CAS  Google Scholar 

  16. [16] Y. S. Chen and C. J. Rosa: Oxid. Met., 1980, vol. 14, pp. 147-65.

    CAS  Google Scholar 

  17. [17] Y. S. Chen and C. J. Rosa: Oxid. Met.,1980, vol.14, pp. 167-185.

    CAS  Google Scholar 

  18. [18] G. Bertrand, K. Jarraya and J. M. Chaix: Oxid. Met., 1983, vol. 21, pp. 1-19.

    Google Scholar 

  19. [19] J. Unnam, R. N. Shenoy and R. K. Clark: Oxid. Met., 1986, vol. 26, pp. 231-252.

    CAS  Google Scholar 

  20. [20] R. N. Shenoy, J. Unnam and R. K. Clark: Oxid. Met., 1986, vol. 26, pp. 105-124.

    CAS  Google Scholar 

  21. [21] H. L. Du, P. K. Datta, D. B. Lewis and J. S. B. Gray, Corros. Sci., 1994, vol. 36, pp. 631-642.

    CAS  Google Scholar 

  22. [22] R. J. Hanrahan, Jr. and D. P. Butt: Oxid. Met., 1997, vol.47, pp. 317-353.

    CAS  Google Scholar 

  23. [23] I. Gurrappa: J. Alloys Compd., 2005, vol. 389, pp. 190–197.

    CAS  Google Scholar 

  24. [24] H. Guleryuz and H. Cimenoglu: J. Alloys Compd., 2009, vol. 472, pp. 241–246.

    CAS  Google Scholar 

  25. [25] K. S. McReynolds and S.T. Kandala: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1732-1736.

    Google Scholar 

  26. [26] R. Gaddam, B. Sefer, R. Pederson and M.L. Antti: Mater. Charact., 2015, vol. 99, pp. 166–174.

    CAS  Google Scholar 

  27. [27] F. Omidbakhsh, A. R. Ebrahimi and J. Sojka: Oxid. Met., 2015, vol. 84, pp. 33–44.

    CAS  Google Scholar 

  28. [28] S. Tkachenko, O. Datskevich, K. Dvorak, Z. Spotz, L.Kulak and L. Celko: J. Alloys Compd., 2017, vol. 694, pp. 1098-1108.

    CAS  Google Scholar 

  29. [29] E. Dong, W.Yu, Q. Cai, L. Cheng and J. Shi: Oxid. Met., 2017, vol. 88, pp. 719–732.

    CAS  Google Scholar 

  30. [30] Y. Shida and H. Anada: Oxid. Met., 1996, vol.45, pp. 197-219.

    CAS  Google Scholar 

  31. [31] J.L. Murray and H.A. Wriedt: Bull. Alloy Phase Diagrams, 1987, vol. 8, pp. 148-65.

    CAS  Google Scholar 

  32. [32] Z.Liu and G.Welsch: Metall. Trans. A, 1988, vol. 19A, pp. 1121–1125.

    CAS  Google Scholar 

  33. C. E. Shamblen,T. K. Redden, in The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds. (Pergamon Press, New York, 1968), pp. 199–208.

  34. [34] S. Kumar, T.S.N.S.Narayanan, S.G.S. Raman and S.K. Seshadri: Mater. Chem. Phys., 2010, vol. 119, pp. 337–346

    CAS  Google Scholar 

  35. [35]R Gaddam, B Sefer, R Pederson and M-L Antti: IOP conf. Ser. : Mater. Sci. Eng., 2013, vol. 48, 012002.

    Google Scholar 

  36. [36] Thomas Nelis, Richard Payling and Neil W. Barneet: Glow Discharge Optical Emission Spectroscopy: A Practical Guide,The Royal Society of chemistry, U.K., 2003.

    Google Scholar 

  37. [37] M. Wilke, G.Teichert, R. Gemma, A. Pundt, R. Kirchheim, H. Romanus and P. Schaaf: Thin Solid Films, 2011, vol. 520, pp. 1660–1667.

    CAS  Google Scholar 

  38. E. Grigore, C. Ruset, M. Firdaouss, P. Petersson, I. Bogdanovic Radovic and Z. Siketic: Surf. Coat. Technol.,2019, vol. 376, pp. 21-24.

    CAS  Google Scholar 

  39. [39] D. Pradhan, A. Mondal, A. Chakraborty, M. Manna and M. Dutta: Surf. Coat. Technol., 2019, vol. 375, pp. 427–441.

    CAS  Google Scholar 

  40. J. Qi and G.E. Thompson: Appl. Surf. Sci., 2016, vol.377, pp. 109-120.

    CAS  Google Scholar 

  41. [41] M. Uemura, T. Yamamoto, K. Fushimi, Y. Aoki, K. Shimizu, and H. Habazaki: Corros. Sci., 2009, vol. 51, pp. 1554–1559.

    CAS  Google Scholar 

  42. [42] M. Mouanga,P.Berçot and J.Y. Rauch: Corros. Sci., 2010, vol. 52, pp. 3984–3992.

    CAS  Google Scholar 

  43. [43] V. Moutarlier, S. Lakard, T. Patois, and B. Lakarda: Thin Solid Films, 2014, vol. 550, pp. 27–35.

    CAS  Google Scholar 

  44. [44] M. Laveissière, H. Cerda, J. Roche, L. Cassayre and L. Arurault: Surf. Coat. Technol.,2019, vol. 361, pp. 50–62.

    Google Scholar 

  45. [45] K. Shimizu, G.M. Brown, H. Habazaki, K. Kobayashi,P. Skeldon, G.E. Thompson and G.C. Wood: Corros. Sci., 2001, vol. 43, pp. 199-205.

    CAS  Google Scholar 

  46. [46] I.D. Graeve, I. Schoukens, A.Lanzutti, F. Andreatta, A. Alvarez-Pampliega, J.D. Strycker, L. Fedrizzi and H Terryn: Corros. Sci., 2013, vol.76, pp. 325–336.

    Google Scholar 

  47. [47] F. N. Afshar, R. Ambat, C. Kwakernaak, J.H.W. de Wita, J.M.C. Mol and H. Terryn: Electrochim. Acta., 2012, vol. 77, pp. 285– 293.

    CAS  Google Scholar 

  48. [48] A. El Hajjami, M.P. Gigandet, M. De Petris-Wery, J.C. Catonne and J.J. Duprat: Appl. Surf. Sci., 2007, vol. 254, pp. 480–489.

    Google Scholar 

  49. [49] J. Flis, J. Mankowski and T. Zakroczymski: Corros. Sci., 2000, vol. 42, pp. 313-327.

    CAS  Google Scholar 

  50. J.A. García, R.J. Rodríguez, R. Martínez, C. Fernández, A. Fernández and R. Payling: Appl. Surf. Sci., 2004, vol. 235, pp. 97–102.

    Google Scholar 

  51. M. Pancielejkoand, W. Precht: J. Mater. Process. Technol. 2004, vol. 157–158, pp. 394–398.

    Google Scholar 

  52. E. DeLasHeras, G. Ybarra, D. Lamas, A. Cabo, E. L. Dalibon and S. P. Brühl: Surf. Coat. Technol., 2017, vol. 313, pp. 47-54.

    CAS  Google Scholar 

  53. A. Ollivier-Leduc, M.-L. Giorgi, D. Balloy and J.-B. Guillot: Corros. Sci., 2011, vol. 53, pp. 1375–1382.

    CAS  Google Scholar 

  54. [54] Q.Bignon, F.Martin, Q. Auzoux, F.Miserque, M.Tabarant, L. Latu-Romain and Y.Wouters: Corros. Sci., 2019, vol. 150, pp.32–41.

    CAS  Google Scholar 

  55. [55] J.Michler, M.Aeberhard, D.Velten, S.Winter, R.Payling and J.Breme: Thin Solid Films, 2004, vol. 447 –448, pp. 278–283.

    Google Scholar 

  56. [56] L. Pranevicius, S. Tuckute, K. Gedvilas and D.Milcius: Thin Solid Films, 2012, vol. 524, pp. 133–136.

    CAS  Google Scholar 

  57. [57] S. Pour-Ali, M. Weiser, N. T. Nguyen, A.R. K.Rashid, A. Babakhani and S.Virtanen: Corros. Sci., 2020, vol. 163, 108282

    CAS  Google Scholar 

  58. [58] P. Bindu and S.Thomas: J. Theor. Appl. Phys, 2014, vol. 8, pp. 123-134.

    Google Scholar 

  59. D. Tromans: Int. J. Res. Rev. Appl. Sci.,2011, vol.6, pp. 462-483.

    Google Scholar 

  60. K.L. Luthra: Oxid. Met., 1991, vol. 36, pp. 475–490.

    CAS  Google Scholar 

  61. [61]W. R. Tyson: Scr. Mater.,1969, vol. 3, pp. 917-922.

    CAS  Google Scholar 

  62. A. M. Chaze and C. Coddet, J. Le: Common Met., 1986, vol. 124, pp. 73 – 84.

    CAS  Google Scholar 

  63. C. Schuman, T. E. Lenarduzzi, S. Weber, M.J. Philippe, D. Petelot and P. Bounie: Surf. Coat. Technol., 2006, vol. 200, pp. 4572 – 4578.

    CAS  Google Scholar 

  64. T. Tsuji: J. Nucl. Mater.,1997, vol. 247, pp. 63-71.

    CAS  Google Scholar 

  65. L.Scotti, and A. Mottura: J. Chem. Phys., 20161, vol.44, pp. 084701(1)-084701(9).

  66. [66] F. Omidbakhsh, and A. R. Ebrahimi: Rare Met.,2016, vol.35, pp. 149-153.

    CAS  Google Scholar 

  67. [67]S. Andersson, B.Collen, U. Kuylenstierna and A. Magneli: Acta Chem Scand., 1957, vol. 11, pp. 1641-1652.

    CAS  Google Scholar 

  68. [68] S. Yamaguchi, K.Hiraga and M.Hirabayashi: J. Phys. Soc. Japan, 1970, vol. 28, pp. 1014-1023.

    CAS  Google Scholar 

  69. [69] M.S. Blanter, E.B. Granovskiy and L.B. Magalas: Mater. Sci. Eng. A, 2004, vol. 370, pp. 88–92.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the efforts of Dr. Vivekanand Dubey for the GDOES experiment, Dr. Shovit Bhattacharya for XRD experiments and Mr. Sanjay Kumar for the SEM examination. This work is a part of a doctoral degree of the first author from Homi Bhabha National Institute, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafful Kumar Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 13, 2020; accepted September 10, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, P.K., Kain, V. Effect of Isothermal Heat Treatment at 760 °C on the Oxidation Behavior of Ti-Al-Zr Alloy. Metall Mater Trans A 51, 6768–6783 (2020). https://doi.org/10.1007/s11661-020-06029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06029-z

Navigation