Log in

Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The time-dependent experiment was performed to investigate the corrosion behavior of low-temperature liquid nitrocarburized (LNC) 304 austenitic stainless steel in wet H2S environments. Characteristics of H2S corrosion products, as well as localized corrosion behavior, were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and optical profilometry. The results revealed that the untreated steels, of which the H2S corrosion product layer on the untreated surface thickened but displayed a layered defect structure as the corrosion proceeded, had a higher weight loss than the LNC. Energy-dispersive spectroscopy (EDS) served to reveal the relationship between corrosion behavior and the content of sulfur, chromium, and other elements, and the valences of these elements were illustrated by XPS. The surface morphology after removing corrosion products showed that the presence of nitrocarburized S phase could prevent general corrosion and inhibit pit propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Wang, L. Zhang, X. Tang, Z. Zhang, and M. Lu: Appl. Surf. Sci., 2017, vol. 423, pp. 457–64.

    CAS  Google Scholar 

  2. J. Ding, L. Zhang, M. Lu, J. Wang, Z. Wen, and W. Hao: Appl. Surf. Sci., 2014, vol. 289, pp. 33–41.

    CAS  Google Scholar 

  3. P. Wang, J. Wang, S. Zheng, Y. Qi, M. **ong, and Y. Zheng: Int. J. Hydr. Energy, 2015, vol. 40, pp. 11925–11930.

    CAS  Google Scholar 

  4. L. Zeng, X.P. Guo, and G.A. Zhang: J. Alloy Compd., 2017, vol. 724, pp. 827–40.

    CAS  Google Scholar 

  5. E. Heitz: Electrochim. Acta, 1996, vol. 41, pp. 503–09.

    CAS  Google Scholar 

  6. X. Hu and A. Neville: Wear, 2009, vol. 267, pp. 2027–32.

    CAS  Google Scholar 

  7. J. Aguirre, M. Walczak, and M. Rohwerder: Wear, 2019, vols. 438–439, 203053.

    Google Scholar 

  8. X. Zhang, J. Wang, H. Fan, J. Yan, L. Duan, and T. Gu: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1–12.

    Google Scholar 

  9. E. Araújo, R. Bandeira, M. Manfrinato, J. Moreto, R. Borges, S. Vales, P. Suzuki, and L. Rossino: J. Mater. Res. Technol., 2019, vol. 8, pp. 2180–91.

    Google Scholar 

  10. J. Wang, Z. Li, D. Wang, S. Qiu, and F. Ernst: Acta Mater., 2017, vol. 128, pp. 235–40.

    CAS  Google Scholar 

  11. D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer: Acta Mater., 2014, vol. 79, pp. 339–50.

    CAS  Google Scholar 

  12. Y. Sun and T. Bell: Tribol. Lett., 2002, vol. 13, pp. 29–34.

    CAS  Google Scholar 

  13. Y. Peng, C. Chen, X. Li, J. Gong, Y. Jiang, and Z. Liu: Surf. Coat. Technol., 2017, vol. 328, pp. 420–27.

    CAS  Google Scholar 

  14. X. Li, W. Dou, L. Tian, and H. Dong: Lubricants, 2018. doi:10.3390/lubricants6040093

    Article  Google Scholar 

  15. G. Pintaude, A. Rovani, J. Das, L. Lagoeiro, X. Li, and H. Dong: J. Mater. Eng. Perform., 2019, vol. 28, pp. 3673–82.

    CAS  Google Scholar 

  16. X. Zhang, J. Wang, H. Fan, and D. Pan: Appl. Surf. Sci., 2018, vol. 440, pp. 755–62.

    CAS  Google Scholar 

  17. P. Wang, Z. Lv, S. Zheng, Y. Qi, J. Wang, and Y. Zheng: Int. J. Hydr. Energy, 2015, vol. 40, pp. 11514–11521.

    CAS  Google Scholar 

  18. W. Li, X. Zhu, C. Wang, and X. **: Mater. Today, 2015, vol. 2, pp. S691–S695.

    Google Scholar 

  19. X. Xu, L. Wang, Z. Yu, J. Qiang, and Z. Hei: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1193–99.

    CAS  Google Scholar 

  20. J. Wang, Y. Lin, and Q. Zhang: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4525–34.

    Google Scholar 

  21. M. Zhao, Y. Shan, R. Fu, Y. Ke, and H. Yu: Mater. Lett., 2002, vol. 57, pp. 141–45.

    CAS  Google Scholar 

  22. J. Wang, Y. Lin, M. Li, H. Fan, D. Zeng, and J. **ong: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1010–16.

    Google Scholar 

  23. R. Huang, J. Wang, S. Zhong, M. Li, J. **ong, and H. Fan: Appl. Surf. Sci., 2013, vol. 271, pp. 93–97.

    CAS  Google Scholar 

  24. G. Chen, J. Wang, H. Fan, D. Wang, X. Li, and H. Dong: J. Alloy Compd., 2019, vol. 776, pp. 702–11.

    CAS  Google Scholar 

  25. L. Li, J. Wang, J. Yan, L. Duan, X. Li, and H. Dong: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6521–32.

    Google Scholar 

  26. J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, and R. Huang: Surf. Coat. Technol., 2012, vol. 206, pp. 3399–3404.

    CAS  Google Scholar 

  27. K. Deng, Y. Lin, H. Ning, W. Liu, A. Singh, and G. Zhang: Appl. Geochem., 2018, vol. 99, pp. 22–30.

    CAS  Google Scholar 

  28. A. Groysman: Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry, 1st ed., Springer International Publishing AG, Cham, Switzerland, 2017.

    Google Scholar 

  29. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM, West Conshohocken, PA, 2003.

    Google Scholar 

  30. P. Tewari, M. Bailey, and A. Campbell: Corros. Sci., 1979, vol. 19, pp. 573–85.

    CAS  Google Scholar 

  31. M. Alizadeh and S. Bordbar: Corros. Sci., 2013, vol. 70, pp. 170–09.

    CAS  Google Scholar 

  32. D. Rickard and G. Luther: ChemInform, 2007, vol. 38, pp. 514–62.

    Google Scholar 

  33. J. Sardisco, W. Wright, and E. Greco: Corrosion, 1963, vol. 19, pp. 354–59.

    Google Scholar 

  34. P. Tewari and A. Campbell: Can. J. Chem., 1979, vol. 57, pp. 188–96.

    CAS  Google Scholar 

  35. H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65–98.

    CAS  Google Scholar 

  36. W. Hao, L. Zhang, and H. Li: Paper No. 11293, NACE International, Houston, TX, 2011.

  37. L. Zhang, H. Li, and F. Shi: Int. J. Min. Met. Mater., 2017, vol. 24, pp. 401–09.

    CAS  Google Scholar 

  38. P. Bai, S. Zheng, and C. Chen: Mater. Chem. Phys., 2015, vols. 149–150, pp. 295–301.

    Google Scholar 

  39. Z. Wang, L. Zhang, Z. Zhang, and M. Lu: Appl. Surf. Sci., 2018, vol. 458, pp. 686–99.

    CAS  Google Scholar 

  40. D. Macdonald, S. Biaggio, and H. Song: J. Electrochem. Soc., 1992, vol. 139, pp. 170–76.

    CAS  Google Scholar 

  41. X. Liu, P. Okafor, and Y. Zheng: Corros. Sci., 2009, vol. 51, pp. 744–51.

    CAS  Google Scholar 

  42. Z. Iofa and V. Batrakov: Electrochim. Acta, 1964, vol. 9, pp. 1645–53.

    CAS  Google Scholar 

  43. R. King, J. Miller, and J. Smith: Br. Corros. J., 1973, vol. 8, pp. 137–41.

    CAS  Google Scholar 

  44. W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, and K. Edstr: Appl. Surf. Sci., 2012, vol. 258, pp. 5790–97.

    CAS  Google Scholar 

  45. A. Laszczyńska, W. Tylus, J. Winiarski, and I. Szczygieł: Surf. Coat. Technol., 2017, vol. 317, pp. 26–37.

    Google Scholar 

  46. G. Myburg, K. Varga, W.O. Barnard, P. Baradlai, L. Tomcsányi, J.H. Potgieter, C.W. Louw, and M.J. van Staden: Appl. Surf. Sci., 1998, vol. 136, pp. 29–35.

    CAS  Google Scholar 

  47. L. Zeng, X.P. Guo, G.A. Zhang, and H.X. Chen: Corros. Sci., 2018, vol. 144, pp. 258–65.

    CAS  Google Scholar 

  48. J.E. Castle: J. Electrochem. Soc., 1990, vol. 137, p. 2031.

    CAS  Google Scholar 

  49. H.W. Nesbitt, D. Legrand, and G.M. Bancroft: Phys. Chem. Miner., 2000, vol. 27, pp. 357–66.

    CAS  Google Scholar 

  50. H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu, and Z. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.

    CAS  Google Scholar 

  51. S. Ningshen, U. KamachiMudali, V.K. Mittal, and H.S. Khatak: Corros. Sci., 2007, vol. 49, pp. 481–96.

    CAS  Google Scholar 

  52. M. Monnot, R.P. Nogueira, V. Roche, G. Berthomé, E. Chauveau, R. Estevez, and M. Mantel: Appl. Surf. Sci., 2017, vol. 394, pp. 132–41.

    CAS  Google Scholar 

  53. M.B. Kermani and A. Morshed: Corrosion, 2003, vol. 59, pp. 659–83.

    CAS  Google Scholar 

  54. G. Schmidt: Advance in CO2 Corrosion, vol. 1, NACE, Houston, TX, 1984, pp. 1–2.

    Google Scholar 

  55. A. Jarrah, M. Bigerelle, G. Guillemot, D. Najjar, A. Iost, and J.-M. Nianga: Corros. Sci., 2011, vol. 53, pp. 2453–67.

    CAS  Google Scholar 

  56. L. Organ, J.R. Scully, A.S. Mikhailov, and J.L. Hudson: Electrochim. Acta, 2005, vol. 51, pp. 225–41.

    CAS  Google Scholar 

  57. P. Marcus, V. Maurice, and H. Strehblow: Corros. Sci., 2008, vol. 50, pp. 2698–2704.

    CAS  Google Scholar 

  58. J. Soltis: Corros. Sci., 2015, vol. 90, pp. 5–22.

    CAS  Google Scholar 

  59. P. Bai, H. Zhao, S. Zheng, and C. Chen: Corros. Sci., 2015, vol. 93, pp. 109–19.

    CAS  Google Scholar 

  60. R. Wei, X. Chen, Z. Ai, and Y. **: Int. J. Hydrogen Energy, 2018, vol. 43, pp. 9059–67.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the grants provided by the National Natural Science Foundation of China (Grant Nos. 51471112 and 51611130204), the Science and Technology Planning Project of Sichuan (Grant No. 2016GZ0173), and the Royal Society, United Kingdom (Newton Mobility Grant No. IE151027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 13, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, J., Tang, Z. et al. Low-Temperature Nitrocarburizing of Austenitic Stainless Steel for Combat Corrosion in H2S Environments. Metall Mater Trans A 51, 4242–4256 (2020). https://doi.org/10.1007/s11661-020-05802-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05802-4

Navigation