Log in

Effect of Welding Speed on Texture in Laser-Welded Dual-Phase Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study makes an attempt to understand the influence of welding speed on the formability of a welded microalloyed steel. An optimum heat input for laser welding was maintained in this study, under bead-on-plate and butt-welding conditions, with varying welding speed. Initially, the heat-affected zone (HAZ) had a moderate γ-fiber texture, which was later distorted with the increased speed of welding. There was an enhancement of rotated cube {001}〈110〉 and cube {001}〈010〉 orientations. The fusion zone (FZ) exhibited mainly random texture, without any presence of γ-fiber. However, faster speeds resulted in strengthening of intensities close to the rotated cube {001}〈110〉 and cube {001}〈010〉 orientations in the FZ. The increased welding speed resulted in enlargement of dimples of fracture surface for the HAZ, finally leading to a transition into a mixed mode of fracture. With increased welding speed, the FZ exhibited a drop in the equiaxiality of the austenite grains. The enhancement of the columnar nature of the austenite grains at the FZ could be correlated with the cube texture formation and deterioration in formability of the welded material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.J. Bunge: Texture Analysis in Materials Science, Butterworths, London, 1982.

    Google Scholar 

  2. H.J. Bunge: Int. Mater. Rev., 1987, vol. 32 (1), pp. 265–91.

    Article  CAS  Google Scholar 

  3. H. Inagaki, K. Kurihara, and I. Kozasu: Trans. Iron Steel Inst. Jpn., 1977, vol. 17 (2), pp. 75–81.

    Article  Google Scholar 

  4. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35 (1), pp. 1–36.

    Article  Google Scholar 

  5. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf: Eng. Fract. Mech., 2014, vol. 120, pp. 15–25.

    Article  Google Scholar 

  6. J. Suryawanshi, K.G. Prashanth, and U. Ramamurty: Mater. Sci. Eng. A, 2017, vol. 696, pp. 113–21.

    Article  CAS  Google Scholar 

  7. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Progr. Mater. Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  8. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39 (4), pp. 129–72.

    Article  CAS  Google Scholar 

  9. X.J. Shen, S. Tang, Y.J. Wu, X.L. Yang, J. Chen, Z.Y. Liu, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng.: A, 2017, vol. 685, pp. 194–204.

    Article  CAS  Google Scholar 

  10. I. Lischewski and G. Gottstein: Acta Mater., 2011, vol. 59 (4), pp. 1530–41.

    Article  CAS  Google Scholar 

  11. R. Joodaki, S.R. AlaviZaree, K. Gheisari, and M. Eskandari: J. Mater. Eng. Perform., 2017, vol. 26, pp. 2003–13.

    Article  CAS  Google Scholar 

  12. Q. Chu, R. Baib, H. Jian, Z. Lei, N. Hu, and C. Yan: Mater. Charact., 2018, vol. 137, pp. 269–76.

    Article  CAS  Google Scholar 

  13. H. Gao, G. Agarwal, M. Amirthalingam, M.J.M. Hermans, and I.M. Richardson: Weld. World, 2018, vol. 62, pp. 71–78.

    Article  CAS  Google Scholar 

  14. T. Soysal and S. Kou: Acta Mater., 2018, vol. 143, pp. 181–97.

    Article  CAS  Google Scholar 

  15. S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springer, London, 2014.

    Book  Google Scholar 

  16. S. Keeler, M. Kimchi, and P.J. Mconey: Advanced High-Strength Steels Application Guidelines, Technical Report 6.0, World Auto Steel, Brussels, 2017.

  17. Z. Yang and A. Bandivadekar: “Light-Duty Vehicle Greenhouse Gas and Fuel Economy Standards,” Technical Report, The International Council on Clean Transportation, Washington, DC, 2017.

    Google Scholar 

  18. C. Lesch, N. Kwiaton, and F.B. Klose: Steel Res. Int., 2017, vol. 88 (10), pp. 1–21.

    Article  Google Scholar 

  19. S. Katayama: Handbook of Laser Welding Technologies, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, Amsterdam, 2013.

    Book  Google Scholar 

  20. M.S. Wȩglowski, S. Błacha, and A. Phillips: Vacuum, 2016, vol. 130, pp. 72–92.

    Article  Google Scholar 

  21. K.M. Hong and Y.C. Shin: J. Mater. Process. Technol., 2017, vol. 245, pp. 46–69.

    Article  CAS  Google Scholar 

  22. W. Chen, P. Ackerson, and P. Molian: Mater. Des., 2009, vol. 30 (2), pp. 245–51.

    Article  CAS  Google Scholar 

  23. A.K. Sinha, D.Y. Kim, and D. Ceglarek: Opt. Las. Eng., 2013, vol. 51 (10), pp. 1143–52.

    Article  Google Scholar 

  24. Q. Sun, H. Di, J. Li, B. Wu, and R.D.K. Misra: Mater. Sci. Eng.: A, 2016, vol. 669, pp. 150–58.

    Article  CAS  Google Scholar 

  25. M. Moradi, M. Ghoreishi, and A. Khorram: Las. Eng., 2018, vol. 39 (3–6), pp. 379–91

    CAS  Google Scholar 

  26. M. Nouroozi, H. Mirzadeh, and M. Zamani: Mater. Sci. Eng.: A, 2018, vol. 736, pp. 22–26.

    Article  CAS  Google Scholar 

  27. A. Das and S. Tarafder: Int. J. Plasticity, 2009, vol. 25, pp. 2222–47.

    Article  CAS  Google Scholar 

  28. C. **e, S. Yang, H. Liu, Q. Zhang, Y. Cao, and Y. Wang: J. Mater. Eng. Perform., 2017, vol. 26 (8), pp. 3794–3801.

    Article  CAS  Google Scholar 

  29. G. Agarwal, M. Amirthalingam, S.C. Moon, R.J. Dippenaar, I.M. Richardson, and M.J.M. Hermans: Scripta Mater., 2018, vol. 146, pp. 105–09.

    Article  CAS  Google Scholar 

  30. L. **e, P. Yang, N. Zhang, C. Zong, D. **a, and W. Mao: J. Magn. Magn. Mater., 2014, vol. 356, pp. 1–4.

    Article  CAS  Google Scholar 

  31. J. Li, C. Yuan, Q. Qi, X. Bao, and X. Gao: Metals, 2017, vol. 7, p. 36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Tata Steel R&D management for providing all the necessary support for this project work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajit Mitra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Arora, K.S., Bhattacharya, B. et al. Effect of Welding Speed on Texture in Laser-Welded Dual-Phase Steel. Metall Mater Trans A 51, 2915–2926 (2020). https://doi.org/10.1007/s11661-020-05747-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05747-8

Navigation