Log in

Stress Corrosion Cracking Observed in Ex-service Gas Pipelines: A Comprehensive Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The properties affecting stress corrosion cracking (SCC) in ex-service API 5L X42 and X65 pipeline steels were investigated to determine the differences between the two grades. Field-grown sections of SCC affected pipelines were studied to determine what effect the physical properties had on SCC growth. Using electron backscatter diffraction (EBSD) and a newly developed technique, SCC affected grains were separated from unaffected grains to determine the microstructural properties influencing SCC. It was confirmed in both grades that cracks primarily propagated between high angle grain boundaries and most coincident site lattice boundaries didn’t offer increased resistance to SCC. Σ3, Σ7, and Σ11 boundaries were present in higher proportions in uncracked grain boundaries than cracked in both grades. Crack arrest locations typically had high levels of {110}//RP (rolling plane) and {111}//RP textured grains ahead of cracks whilst cracked grain boundaries tended to contain both {110}//RP and {112}//RP textured grains. Uncracked outer surfaces of pipe in both grades contained mostly {110}//RP textured grains. Transgranular cracking was observed in both grades in isolated locations and tended to occur in {100}//RP and {111}〈112〉 textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. The Taylor factor shows the expected yield behavior of a grain based on its crystal orientation and the characteristics of the applied stress.[37]

References

  1. Transportation Research Board and National Academies of Sciences, Engineering, Medicine: Safely Transporting Hazardous Liquids and Gases in a Changing U.S. Energy Landscape, The National Academies Press, Washington, DC, 2018. https://doi.org/10.17226/24923.

  2. R.N. Parkins: CORROSION 2000. 2000.

  3. A. King, G. Johnson, D. Engelberg, W. Ludwig, and J. Marrow: Science, 2008, 321(5887): p. 382-385.

    CAS  Google Scholar 

  4. B. Fang, A. Atrens, J. Wang, E.-H. Han, Z. Zhu, and W. Ke: Journal of materials science, 2003, 38(1): p. 127-132.

    CAS  Google Scholar 

  5. J.G. Gonzalez-Rodriguez, M. Casales, V.M. Salinas-Bravo, J.L. Albarran, and L. Martinez: Corrosion, 2002, 58(7): p. 584-590.

    CAS  Google Scholar 

  6. National Energy Board: Public Inquiry Concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipelines: Report of the Inquiry, Technical Report no. MH-2-95, National Energy Board, Calgary, AB, 1996. http://publications.gc.ca/pub?id=9.646397&sl=0

  7. F. Song: CORROSION 2008. 2008.

  8. R.N. Parkins: Corrosion, 1996, 52(5): p. 363-374.

    CAS  Google Scholar 

  9. G. Van Boven, W. Chen, and R. Rogge: Acta Materialia, 2007, 55(1): p. 29-42.

    Google Scholar 

  10. O. Lavigne, E. Gamboa, W. Costin, M. Law, V. Luzin, and V. Linton: Engineering Failure Analysis, 2014, 45: p. 283-91.

    CAS  Google Scholar 

  11. E. Gamboa, V. Linton, and M. Law: International Journal of Fatigue, 2008, 30(5): p. 850-860.

    CAS  Google Scholar 

  12. J.H. Bulloch: Theoretical and Applied Fracture Mechanics, 1991, 16(1): p. 1-17.

    Google Scholar 

  13. M.A. Eaglesham, J.U. Gaum, and J.H. Bulloch: Theoretical and Applied Fracture Mechanics, 1988, 10(2): p. 97-109.

    Google Scholar 

  14. R. Parkins: in 5th Symp. Line Pipe Research L. 1974. p. 30174.

  15. J.A. Beavers, T.K. Christman, and R.N. Parkins: Materials Performance, 1988, 27(4): p. 22-26.

    CAS  Google Scholar 

  16. P. Kentish: Corrosion Science, 2007, 49(6): p. 2521-2533.

    CAS  Google Scholar 

  17. H. Asahi, T. Kushida, M. Kimura, H. Fukai, and S. Okano: Corrosion, 1999, 55(7): p. 644-652.

    CAS  Google Scholar 

  18. J. Li, M. Elboujdaini, B. Fang, R. Revie, and M.W. Phaneuf: Corrosion, 2006, 62(4): p. 316-322.

    CAS  Google Scholar 

  19. Z.Y. Liu, X.G. Li, C.W. Du, G.L. Zhai, and Y.F. Cheng: Corrosion Science, 2008, 50(8): p. 2251-2257.

    CAS  Google Scholar 

  20. M.A. Arafin and J.A. Szpunar: Corrosion Science, 2009, 51(1): p. 119-128.

    CAS  Google Scholar 

  21. M.A. Arafin and J.A. Szpunar: ICF12, Ottawa 2009, 2009.

  22. A. Roccisano, S. Nafisi, and R. Ghomashchi: in Iron Steel Technol. Conf., AISTech 2018, 2018.

  23. V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, and R. Penelle: Scripta Materialia, 2005, 52(2): p. 147-152.

    CAS  Google Scholar 

  24. V.C. Venegas, F. Hallen, J. M. Baudin, T. Penelle: Metall. Mater. Trans. A, 2007, 38(5): 1022-1031.

    CAS  Google Scholar 

  25. V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-Hernández, and J.M. Hallen: Corrosion Science, 2011, 53(12): p. 4204-4212.

    CAS  Google Scholar 

  26. B. Rath and I. Bernstein: Metallurgical Transactions, 1971, 2(10): p. 2845-2851.

    CAS  Google Scholar 

  27. T. Watanabe: Res Mechanica, 1984, 11(1): p. 47-84.

    CAS  Google Scholar 

  28. H. Lin and D. Pope: Acta metallurgica et materialia, 1993, 41(2): p. 553-562.

    CAS  Google Scholar 

  29. P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scripta Metallurgica Et Materialia, 1995, 33(9): p. 1387-1392.

    CAS  Google Scholar 

  30. American Petroleum Institute: API 5L: Specification for Line Pipe, 43rd edn., API Publishing Services, Washington, DC, 2004.

  31. A. ASTM: ASTM Stand, 2012, pp. 1–43.

  32. O. Lavigne, E. Gamboa, J. Griggs, V. Luzin, M. Law, and A. Roccisano: Mater. Sci. Technol. 2016;85:26–35

    Google Scholar 

  33. E. Gamboa: Corrosion Engineering, Science and Technology, 2015, 50(3): p. 191-195.

    CAS  Google Scholar 

  34. O. Lavigne, E. Gamboa, V. Luzin, and M. Law: Engineering Failure Analysis, 2018, 85: p. 26-35.

    CAS  Google Scholar 

  35. J. Beavers and N. Thompson: ASM Handbook. ASM International, Cleveland 2006, pp 1015-1025

    Google Scholar 

  36. F.J. Humphreys, G.S. Rohrer, and A.D. Rollett: in Recrystallization and related annealing phenomena, chap. 4, Elsevier, Amsterdam, 2017, p. 118.

    Google Scholar 

  37. J.H. Shen, Y.L. Li, and Q. Wei: Materials Science and Engineering: A, 2013, 582: p. 270-275.

    CAS  Google Scholar 

  38. EDAX: Electron Backscatter Diffraction (EBSD) Analysis of Cracking in Polycrystalline Materials, Technical Note, 2015. https://www.edax.com/resources/applications-literature?requestedmedia=/-/media/ametekedax/files/ebsd/technical_notes/ebsd%20analysis%20of%20cracking%20in%20polycrystalline%20materials.pdf&EmailRequired=yes.

  39. J. Kuniya, H. Anzai, and I. Masaoka: Corrosion, 1992, 48(5): p. 419-425.

    CAS  Google Scholar 

  40. G.S. Rohrer: Journal of Materials Science, 2011, 46(18): p. 5881-5895.

    CAS  Google Scholar 

  41. M.A. Mohtadi-Bonab, J.A. Szpunar, R. Basu, and M. Eskandari: International Journal of Hydrogen Energy, 2015, 40(2): p. 1096-1107.

    CAS  Google Scholar 

  42. R. Ray, J. Jonas, M. Butron-Guillen, and J. Savoie: ISIJ International, 1994, 34(12): p. 927-942.

    CAS  Google Scholar 

  43. O. Engler, M.Y. Huh, and C.N. Tome: Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000, 31(9): p. 2299-2315.

    CAS  Google Scholar 

  44. N.S. Mourino, R. Petrov, J.H. Bae, K. Kim, and L.A.I. Kestens: Advanced Engineering Materials, 2010, 12(10): p. 973-980.

    CAS  Google Scholar 

  45. S. Nafisi, M.A. Arafin, L. Collins, and J. Szpunar: Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012, 531: p. 2-11.

    Google Scholar 

  46. H. Kurishita, A. Oishi, H. Kubo, and H. Yoshinaga: J. Japan Inst. Metals, 1983, 47: p. 546.

    CAS  Google Scholar 

  47. V.Y. Gertsman and S.M. Bruemmer: Acta Materialia, 2001, 49(9): p. 1589-1598.

    CAS  Google Scholar 

  48. B. Alexandreanu, B. Capell, and G.S. Was: Materials Science and Engineering: A, 2001, 300(1–2): p. 94-104.

    Google Scholar 

  49. D.C. Crawford and G.S. Was: Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1992, 23(4): p. 1195-1206.

    CAS  Google Scholar 

  50. B. Alexandreanu and G.S. Was: Scripta Materialia, 2006, 54(6): p. 1047-1052.

    CAS  Google Scholar 

  51. A. Boumaiza, T. Baudin, N. Rouag, and R. Penelle: Chinese Physics Letters, 2007, 24(6): p. 1759.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Energy Pipelines CRC, supported through the Australian Government’s Cooperative Research Centres Program. The funding and in-kind support from the APGA RSC is gratefully acknowledged. The authors also acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facilities at the University of Adelaide and Flinders University. The Authors would like to acknowledge the support of Dr. Erwin Gamboa of TransCanada (former lecturer at The University of Adelaide) and the technical assistance of the applications engineers at EDAX particularly Matt Nowell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roccisano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 15, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roccisano, A., Nafisi, S. & Ghomashchi, R. Stress Corrosion Cracking Observed in Ex-service Gas Pipelines: A Comprehensive Study. Metall Mater Trans A 51, 167–188 (2020). https://doi.org/10.1007/s11661-019-05496-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05496-3

Navigation