Log in

J-integral Fracture Toughness of High-Mn Steels at Room and Cryogenic Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The J-integral fracture toughness values of high-Mn steel (Fe-25 wt pct Mn) and 304L stainless steel were evaluated at 25 °C, 0 °C, − 50 °C, − 100 °C, − 163 °C, and − 196 °C using precracked compact tension (CT) specimens and compared to those determined using Charpy impact tests. The high-Mn steel exhibited excellent J-integral fracture toughness at both room and cryogenic temperatures, with values comparable to those of 304L stainless steel. However, the trend of the J-integral fracture toughness of high-Mn steel with the decreasing temperature differed from that of the Charpy impact test results. Electron backscattered diffraction and micrographic analyses suggest that the varying stacking fault energies of high-Mn steels at different temperatures affected the deformation behavior in the stretch zone at the crack tip of the CT specimen. The effect of this temperature-dependent deformation behavior of high-Mn steels on the fracture process in the J-integral test could differ from that in the Charpy impact test, resulting in the different trends in the fracture resistance with the decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. X.J. Wang, X.J. Sun, C. Song, H. Chen, W. Han, and F. Pan: Mater. Sci. Eng. A, 2017, vol. 698, pp. 110-16.

    Article  Google Scholar 

  2. 2. J.-S. Kim, J.B. Jeon, J.E. Jung, K.-K. Um, and Y.W. Chang: Met. Mater. Int., 2014, vol. 20, pp. 41-47.

    Article  Google Scholar 

  3. 3. J. Kim, S.-J. Lee, and B.C. De Cooman: Scr. Mater., 2011, vol. 65, pp. 363-66.

    Article  Google Scholar 

  4. 4. L. Mosecker, D. Pierce, A. Schwedt, M. Beighmohamadi, J. Mayer, W. Bleck, and J. Wittig: Mater. Sci. Eng. A, 2015, vol. 642, pp. 71-83.

    Article  Google Scholar 

  5. 5. K. Han, J. Yoo, B. Lee, I. Han, and C. Lee: Mater. Sci. Eng. A, 2014, vol. 618, pp. 295-304.

    Article  Google Scholar 

  6. B. Bhattacharya T.K. Roy, C. Ghosh, and S.K. Ajmani, eds.: in Lecture Notes in Mechanical Engineering, Springer, Singapore, 2018, p. 46.

  7. 7. B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283-362.

    Article  Google Scholar 

  8. 8. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-46.

    Article  Google Scholar 

  9. 9. S. Allain, J.P. Chateau, and O. Bouaziz: Steel Res., 2002, vol. 73, pp. 299-302.

    Article  Google Scholar 

  10. 10. S. Curtze and V.-T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129-41.

    Article  Google Scholar 

  11. 11. C. Zheng and W. Yu: Mater. Sci. Eng. A, 2018, vol. 710, pp. 359-65.

    Article  Google Scholar 

  12. 12. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol. 483, pp. 184-87.

    Article  Google Scholar 

  13. 13. S.S. Sohn, S. Hong, J. Lee, B.-C. Suh, S.-K. Kim, B.-J. Lee, N.J. Kim, and S. Lee: Acta Mater., 2015, vol. 100, pp. 39-52.

    Article  Google Scholar 

  14. 14. W. Seo, D. Jeong, H. Sung, and S. Kim: Mater. Charact., 2017, vol. 124, pp. 65-72.

    Article  Google Scholar 

  15. 15. J.-E. ** and Y.-K. Lee: Acta Mater., 2012, vol. 60, pp. 1680-88.

    Article  Google Scholar 

  16. 16. A.S. Hamada, A. Kisko, A. Khosravifard, M.A. Hassan, L.P. Karjalainen, and D. Porter: Mater. Sci. Eng. A, 2018, vol. 712, pp. 255-65.

    Article  Google Scholar 

  17. 17. J. Kim, Y. Estrin, H. Beladi, I. Timokhina, K.-G. Chin, S.-K. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43, pp. 479-90.

    Article  Google Scholar 

  18. 18. R.A. Mesquita, R. Schneider, K. Steineder, L. Samek, and E. Arenholz: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4015-19.

    Article  Google Scholar 

  19. 19. S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja: Metall. Mater. Trans. A, 2016, vol. 47, pp. 49-58.

    Article  Google Scholar 

  20. 20. H.K. Sung, S.S. Sohn, S.Y. Shin, K.S. Oh, and S. Lee: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3036-50.

    Article  Google Scholar 

  21. ASTM E8/E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials, Annual book of ASTM standards, vol. 03.01, 2016.

  22. ASTM E1820-17: Standard Test Method for Measurement of Fracture Toughness, Annual book of ASTM standards, vol. 03.01, 2017.

  23. 23. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3076-90.

    Article  Google Scholar 

  24. 24. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 158-62.

    Article  Google Scholar 

  25. Y.-K. Lee and C. Choi: Metall. Mater. Trans. A, 2000, vol. 31, pp. 355-60.

    Article  Google Scholar 

  26. 26. A. Das: Metall. Mater. Trans. A, 2015, vol. 47, pp. 748–68.

    Google Scholar 

  27. 27. X.J. ** and T.Y. Hsu: Mater. Chem. Phys., 1999, vol. 61, pp. 135–38.

    Article  Google Scholar 

  28. 28. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

    Article  Google Scholar 

  29. 29. W.S. Yang and C.M. Wan: J. Mater. Sci., 1990, vol. 25, pp. 1821–23.

    Article  Google Scholar 

  30. 30. L. Li and T.Y. Hsu: Calphad, 1997, vol. 21, pp. 443–48.

    Article  Google Scholar 

  31. 31. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1781-95.

    Article  Google Scholar 

  32. 32. L. Remy: Acta Mater., 1978, vol. 26, pp. 443-51.

    Article  Google Scholar 

  33. 33. Z. Chen, J. Pan, T. **, Z. Hong, and Y. Wu: Theor. Appl. Fract. Mech., 2018, vol. 96, pp. 443-51.

    Article  Google Scholar 

  34. 34. M. Valo, K. Wallin, K. Törrönen, and R. Ahlstrand: Int. J. Pressure Vessels Pip., 1993, vol. 55, pp. 81-88.

    Article  Google Scholar 

  35. 35. A. Nazari and A.A. Milani: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3854-59.

    Article  Google Scholar 

  36. 36. F. Wetscher, R. Stock, and R. Pippan: Mater. Sci. Eng. A, 2007, vol. 445-446, pp. 237-43.

    Article  Google Scholar 

  37. 37. J.G. Cowie, M. Azrin, and G.B. Olson: Metall. Mater. Trans. A, 1989, vol. 20, pp. 143-53.

    Article  Google Scholar 

  38. 38. R.J. Klassen, G.C. Weatherly, and B. Ramaswami: Metall. Mater. Trans. A, 1992, vol. 23, pp. 3273-80.

    Google Scholar 

  39. 39. C. Beachem and G. Yoder: Metall. Mater. Trans. B, 1973, vol. 4, pp. 1145-53.

    Article  Google Scholar 

  40. 40. A. Gajji and G. Sasikala: Eng. Fract. Mech., 2017, vol. 180, pp. 148-60.

    Article  Google Scholar 

  41. ASTM E647-15: Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual book of ASTM standards, vol. 03.01, 2015.

  42. 42. I. Černý: Eng. Fract. Mech., 2004, vol. 71, pp. 837-48.

    Article  Google Scholar 

  43. 43. S. Cravero and C. Ruggieri: Eng. Fract. Mech., 2007, vol. 74, pp. 2735-57.

    Article  Google Scholar 

  44. 44. Z. Xu, H.J. Roven, and Z. Jia: Mater. Sci. Eng. A, 2017, vol. 679, pp. 379-90.

    Article  Google Scholar 

  45. 45. D. Geissler, J. Freudenberger, A. Kauffmann, S. Martin, and D. Rafaja: Philos. Mag., 2014, vol. 94, pp. 2967-79.

    Article  Google Scholar 

  46. 46. J. Smith, M.N. Bassim, and C.D. Liu: Eng. Fract. Mech., 1995, vol. 52, pp. 401-08.

    Article  Google Scholar 

  47. 47. S.K. Das, S. Sivaprasad, S. Das, S. Chatterjee, and S. Tarafder: Mater. Sci. Eng. A, 2006, vol. 431, pp. 68-79.

    Article  Google Scholar 

  48. 48. A. Halim, W. Dahl, and K. Hagedorn: Eng. Fract. Mech., 1988, vol. 31, pp. 857-66.

    Article  Google Scholar 

  49. 49. M.N. Bassim, J.R. Matthews, and C.V. Hyatt: Eng. Fract. Mech., 1992, vol. 43, pp. 297-303.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2017R1C1B5018001), and a NRF Grant funded by the Korea government (MSIP) (2018R1A5A6075959). This work was also supported by the Industrial Strategic Technology Development Program (No. 10062304) funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, K., Sung, H. et al. J-integral Fracture Toughness of High-Mn Steels at Room and Cryogenic Temperatures. Metall Mater Trans A 50, 2678–2689 (2019). https://doi.org/10.1007/s11661-019-05200-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05200-5

Navigation