Log in

Residual Strain Analysis in Linear Friction Welds of Similar and Dissimilar Titanium Alloys Using Energy Dispersive X-ray Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Residual strains in linear friction welds (LFW) of similar, Ti-6Al-4V (Ti64) welded to Ti-6Al-4V, and dissimilar, Ti-6Al-4V welded to Ti-5Al-5V-5Mo-3Cr (Ti5553), titanium alloys have been characterized using energy-dispersive X-ray diffraction. For each type of LFW, one sample was chosen in the as-welded (AW) condition and another sample was selected after a post-weld heat treatment (HT). In the present work, residual strains have been separately studied in the alpha and beta phases of the material, and five components (three axial and two shear) have been reported in each case. In-plane axial components of the residual strains show a smooth and symmetric behavior about the weld center for the Ti64-Ti64 LFW samples in the AW condition, whereas these components in the Ti64-Ti5553 LFW sample show a symmetric trend with jump discontinuities. Such jump discontinuities, observed in both the AW and HT conditions of the Ti64-Ti5553 samples, suggest different strain-free lattice parameters in the weld region and the parent material, whereas the results from the Ti64-Ti64 LFW samples in both AW and HT conditions suggest nearly uniform strain-free lattice parameters throughout the weld region. Finally, the observed trends in the in-plane axial residual strain components have been rationalized by the corresponding microstructural changes and variations across the weld region via backscatter electron (BSE) images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. If the condition number of the coefficient matrix of a linear system is very large (≫ 1), it is practically singular. Hence, the solution of the linear system is prone to large numerical error.

  2. It is to be noted, when \( \theta_{v} ,\theta_{h} \) or \( \chi \) are neglected, a few columns of \( {\varvec{A}} \) matrix only contain zeros. Those columns are neglected while calculating condition number.

References

  1. J. Cho, K. Conlon, and R. Reed: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2935–46.

    Article  Google Scholar 

  2. I. Bhamji, M. Preuss, P.L. Threadgill, and A.C. Addison: Mater. Sci. Technol., 2011, vol. 27, pp. 2–12.

    Article  Google Scholar 

  3. R. Turner, R.M. Ward, R. March, and R.C. Reed: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2012, vol. 43, pp. 186–97.

    Article  Google Scholar 

  4. P.J. Withers: Reports Prog. Phys., 2007, vol. 70, pp. 2211–64.

    Article  Google Scholar 

  5. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  Google Scholar 

  6. V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, 1997.

    Google Scholar 

  7. I.A. Denks, M. Klaus, and C. Genzel: Mater. Sci. Forum, 2006, vol. 524–525, pp. 37–44.

    Article  Google Scholar 

  8. C. Genzel, I.A. Denks, R. Coelho, D. Thomas, R. Mainz, D. Apel, and M. Klaus: J. Strain Anal. Eng. Des., 2011, vol. 46, pp. 615–25.

    Article  Google Scholar 

  9. W. Reimers, M. Broda, G. Brusch, D. Dantz, K.D. Liss, A. Pyzalla, T. Schmackers, and T. Tschentscher: J. Non-Destructive Eval., 1998, vol. 17, pp. 129–40.

    Google Scholar 

  10. A. Steuwer, J.R. Santisteban, M. Turski, P.J. Withers, and T. Buslaps: J. Appl. Crystallogr., 2004, vol. 37, pp. 883–9.

    Article  Google Scholar 

  11. M. Croft, I. Zakharchenko, Z. Zhong, Y. Gurlak, J. Hastings, J. Hu, R. Holtz, M. Dasilva, and T. Tsakalakos: J. Appl. Phys., 2002, vol. 92, pp. 578–86.

    Article  Google Scholar 

  12. M.R. Daymond and N.W. Bonner: Phys. B Condens. Matter, 2003, vol. 325, pp. 130–37.

    Article  Google Scholar 

  13. M. Preuss, J. Quinta Da Fonseca, A. Steuwer, L. Wang, P.J. Withers, and S. Bray: J. Neutron Res., 2004, vol. 12, pp. 165–73.

    Article  Google Scholar 

  14. J. Romero, M.M. Attallah, M. Preuss, M. Karadge, and S.E. Bray: Acta Mater., 2009, vol. 57, pp. 5582–92.

    Article  Google Scholar 

  15. P. Frankel, M. Preuss, A. Steuwer, P.J. Withers, and S. Bray: Mater. Sci. Technol., 2009, vol. 25, pp. 640–50.

    Article  Google Scholar 

  16. P. **e, H. Zhao, and Y. Liu: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 351–57.

    Article  Google Scholar 

  17. SAE-AMS 4911H: SAE International, Warrendale, PA, USA, 1995, p. 1.

  18. T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777–81.

    Article  Google Scholar 

  19. R. Young: Int. Union Crystallogr., 1993.

  20. S.L.R. da Silva, L.O. Kerber, L. Amaral, and C.A. dos Santos: Surf. Coatings Technol., 1999, vol. 116–119, pp. 342–46.

    Article  Google Scholar 

  21. M.B. Ivanov, S.S. Manokhin, Y.R. Kolobov, and D.A. Nechayenko: Mater. Phys. Mech., 2010, vol. 10, pp. 62–71.

    Google Scholar 

  22. A.K. Swarnakar, O. Van Der Biest, and B. Baufeld: J. Alloys Compd., 2011, vol. 509, pp. 2723–28.

    Article  Google Scholar 

  23. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.

    Article  Google Scholar 

  24. J.V. Bernier, J.-S. Park, A.L. Pilchak, M.G. Glavicic, and M.P. Miller: Metall. Mater. Trans. A, 2008, vol. 39, pp. 3120–33.

    Article  Google Scholar 

  25. M. Kasemer, R. Quey, and P. Dawson: J. Mech. Phys. Solids, 2017, vol. 103, pp. 179–98.

    Article  Google Scholar 

  26. T. Ozturk and A.D. Rollett: Comput. Mech., 2017, pp. 1–16.

  27. K.M. Knowles and P.R. Howie: J. Elast., 2015, vol. 120, pp. 87–108.

    Article  Google Scholar 

  28. D. Tromans: Int. J. Res. Rev. Appl. Sci., 2011, vol. 6, pp. 462–83.

    Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Science Foundation (Grant Number CMMI 16-51956) under program manager, Dr. Alexis Lewis, and the Lightweight Innovation for Tomorrow Institute (Grant Number LIFT TMP-3a). Base materials for the Ti64-Ti64 and Ti64-Ti5553 welds were provided by Dr. Tom Broderick (GE) and Dr. Austin Mann (Boeing), respectively. The authors thank Dr. Andrew Chuang (APS) for assistance with the setup of the EDD measurement. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Sangid.

Additional information

Manuscript submitted June 6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, R., Rotella, J., Naragani, D. et al. Residual Strain Analysis in Linear Friction Welds of Similar and Dissimilar Titanium Alloys Using Energy Dispersive X-ray Diffraction. Metall Mater Trans A 50, 704–718 (2019). https://doi.org/10.1007/s11661-018-5034-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5034-0

Navigation