Log in

MicroROM: A Physics-Based Constitutive Model for Ni-Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, a physics-based constitutive model is developed for representing the stress–plastic strain response of Ni-based superalloys by considering the hardening mechanisms that contribute to the macroscopic yield stress and the subsequent strain-hardening response in order to derive the entire tensile stress–strain curve. It is demonstrated that the log stress vs log plastic strain curves of Ni-based superalloys such as 702 Li and ME3 exhibit a bilinear behavior with a lower strain-hardening exponent in the low plastic strain regime and a much higher strain-hardening exponent in the high plastic strain regime. These two hardening regimes can be modeled on the basis of self-hardening of individual slip planes and latent hardening of five operative independent slip systems due to cross-slip from {111} planes to {001} planes, leading to the formation of incomplete and complete Kear-Wilsdorf locks. The proposed physics-based constitutive model, dubbed as MicroROM, exhibits a form that is similar to the Ramberg–Osgood (RO) constitutive model, which is widely used in structural analyses of engineering designs and components. MicroROM is applied to predict the tensile stress–strain curves of 720 Li and ME3 with either a subsolvus or supersolvus microstructure for temperatures ranging from 24 °C to 815 °C. The agreement is good between model predictions and experiment data from the literature. The sensitivity of the predicted stress–strain response to individual microstructural parameters is highlighted and the relation to individual hardening mechanisms is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1

From Caillard[14] and Mills and Chrzan.[17] Reprinted with permission from Elsevier

Fig. 2

Experimental data of 720 Li are from Gopinath et al.,[25] while the ME3 data are from Gabb et al.[3]

Fig. 3
Fig. 4

Experimental data are from Milligan et al.[2]

Fig. 5

Experimental data are from Gabb et al.[3] and Gopinath et al.[25]

Fig. 6

Experimental data are from Gabb et al.[3]

Fig. 7

Experimental data are from Gabb et al.[3]

Fig. 8

Experimental data are from Jackson and Reed[24] and Gopinath et al.[25]

Fig. 9

NASA data are from Gabb et al.[3]

Fig. 10

NASA data are from Gabb et al.[3]

Fig. 11
Fig. 12

NASA data are from Gabb et al.[3]

Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40(7), pp. 1588-1603. https://doi.org/10.1007/s11661-009-9858-5

    Article  CAS  Google Scholar 

  2. W.W. Milligan, E.L. Orth, J.J. Schirra, and M.F. Savage: Superalloys 2004, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 331-339.

    Book  Google Scholar 

  3. T.P. Gabb, J. Telesman, P.T. Kantzos, and K. O’Connor: NASA/TM-2002-211796. NASA Glenn Research Center, Cleveland, OH, 2002.

    Google Scholar 

  4. T.P. Gabb, A. Garg, D.L. Ellis, and K.M. O’Connor: NASA/TM-2004-213066. NASA Glenn Research Center, Cleveland, OH, 2004.

    Google Scholar 

  5. T.P. Gabb, J. Gayda, J. Telesman, and A. Garg: Superalloys 2008, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2008, pp. 121-130.

    Google Scholar 

  6. D. Rice, P. Kantzos, B. Hann, J. Neumann, and R. Helmink: Superalloys 2008, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, pp. 139-147.

    Google Scholar 

  7. J. Telesman, P. Kantzos, J. Gayda, P.J. Bonacuse, and A. Prescenzi: Superalloys 2004, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 215-224.

    Book  Google Scholar 

  8. W.D. Cao and R. Kennedy: Superalloys 2004, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 91-99.

    Book  Google Scholar 

  9. R.L. Kennedy: Superalloys 718, 625, 706 and Derivatives 2005, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2005, pp 1-14.

    Google Scholar 

  10. D.P. Pope and S.S. Ezz: Int. Met. Rev., 1984, vol. 29(3), pp. 136-167.

    CAS  Google Scholar 

  11. K.J. Hemker, M.J. Mills, and W.D. Nix: J. Mater. Res., 1992, vol. 7(8), pp. 2059-2069.

    Article  CAS  Google Scholar 

  12. D. Caillard and V. Paidar: Acta Mater., 1996, vol. 44(7), pp. 2759-2771.

    Article  CAS  Google Scholar 

  13. D. Caillard: Acta Mater., 1996, vol. 44(7), pp. 2773-2785.

    Article  CAS  Google Scholar 

  14. D. Caillard: Mater. Sci. Eng., A, 2001, vol. 319-321, pp. 74-83.

    Article  Google Scholar 

  15. B.H. Kear and H.G.F. Wilsdorf: Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 382-386.

    CAS  Google Scholar 

  16. Y.Q. Sun and P.M. Hazzledine: Philos. Mag. A, 1988, vol. 58(4), pp. 603-618.

    Article  CAS  Google Scholar 

  17. M.J. Mills and D.C. Chrzan: Acta Metall. Mater., 1992, vol. 40(11), pp. 3051-3064.

    Article  CAS  Google Scholar 

  18. S.S. Ezz and P.B. Hirsch: Philos. Mag. A, 1994, vol. 69(1), pp. 105-127.

    Article  CAS  Google Scholar 

  19. T.A. Parthasarathy, S.I. Rao, and D.M. Dimiduk: Superalloys 2004, TMS (The Minerals, Metals & Materials Society), Warrendale, PA, 2004, pp. 887-896.

    Book  Google Scholar 

  20. L. Tabourot, M. Fivel, and E. Rauch: Mater. Sci. Eng., A, 1997, vol. 234-236, pp. 639-642.

    Article  Google Scholar 

  21. E.I. Galindo-Nava, L.D. Connor, and C.M.F. Rae: Acta Mater., 2015, vol. 98, pp. 377-390.

    Article  CAS  Google Scholar 

  22. Y.C. Lin, X-M. Chen, D-X. Wen, and M-S. Chen: Comput. Mater. Sci., 2014, vol. 83, pp. 282-289.

    Article  CAS  Google Scholar 

  23. W. Ramberg and W.R. Osgood: Technical Note 503: Determination of Stress–strain Curves by Three Parameters, National Advisory Committee on Aeronautics (NACA), 1941.

  24. M.P. Jackson and R.C. Reed: Mater. Sci. Eng., A, 1999, vol. 259, pp. 85-97.

    Article  Google Scholar 

  25. K. Gopinath, A.K. Gogia, S.V. Kamat, B. Balamuralikrishnan, and U. Ramamurty: Metall. Mater. Trans. A, 2008, vol. 39(10), pp. 340-2350.

    Google Scholar 

  26. A. Korner: Philos. Mag. Lett., 1989, vol. 60(3), pp. 103-110.

    Article  CAS  Google Scholar 

  27. A. Korner: Philos. Mag. A, 1991, vol. 63(3), pp. 407-421.

    Article  CAS  Google Scholar 

  28. E. Nadgornyi: Prog. Mater. Sci., 1988, vol. 31, pp. 493-505.

    Article  Google Scholar 

  29. J.F.W. Bishop and R.A. Hill: Philos. Mag., 1951, vol. 42(327), pp. 414-427.

    Article  CAS  Google Scholar 

  30. G.I. Taylor: Proc. R. Soc. London, 1934, vol. A145, pp. 362-387.

    Article  Google Scholar 

  31. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537-562.

    CAS  Google Scholar 

  32. H. Mecking and Y. Estrin: Microstructure-related Constitutive Modelling of Plastic Deformation, Eighth International Symposium on Metallurgy and Material Science, Riso, Denmark, 1987.

  33. Integrated Materials and Manufacturing Component Analysis for Life Management (IMCALM) Program, US Air Force Metal Affordability Initiative (Agreement Order No. FA8650-14-2-5211A0#40), Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH. Dr. Patrick Golden, Program Manager.

  34. R. Madec, B. Devincre, and L.P. Kubin: Phys. Rev. Lett., 2002, 89(25), 25-33.

    Article  Google Scholar 

  35. B. Devincre, L. Kubin, and T. Hoc: Scr. Mater., 2006, vol. 54, pp. 741-746.

    Article  CAS  Google Scholar 

  36. D.M. Collins and H.J. Stone: Int. J. Plast., 2014, vol. 54, pp. 96-112.

    Article  CAS  Google Scholar 

  37. D. Kuhlmann-Wilsdorf: Metall. Trans. A, 1985, vol. 16(12), pp. 2091-2108.

    Article  Google Scholar 

  38. A. Vinogradov, I.S. Yasnikov, H. Matsuyama, M. Uchida, Y. Kaneko, and Y. Estrin: Acta Mater., 2016, vol. 106, pp. 295-303.

    Article  CAS  Google Scholar 

  39. F.C. Frank and W.T. Read: Phys. Rev., 1950, vol. 79, pp. 722-723.

    Article  CAS  Google Scholar 

  40. A. Staroselsky and B.N. Cassenti: Mech. Mater., 2010, vol. 42, pp. 945-959.

    Article  Google Scholar 

  41. E.O. Hall: Proc. Phys. Soc., Section B, 1951, vol. 64B(9), pp. 742-747.

    Article  Google Scholar 

  42. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    CAS  Google Scholar 

  43. L.A. Gypen and A. Deruyttere: J. Mater. Sci., 1977, vol. 12, pp. 1028-1033.

    Article  CAS  Google Scholar 

  44. W. Huther and B. Reppich: Z. Metallkd., 1978, vol. 69(10), pp. 628-634.

    Google Scholar 

Download references

Acknowledgments

This work was supported by DARPA through Contract Number HR0011-13-C-008 (Jan Vandenbrande, Program Manager). The views, opinions, and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The author acknowledges the assistance by Dr. John McFarland, SwRI, in performing the sensitivity analyses, and Ms. Loretta Mesa, SwRI, in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Chan.

Additional information

Manuscript submitted April 3, 2018.

Distribution A: Approved for public release, distribution unlimited.

Appendix A

Appendix A

This appendix highlights the six yield stress components that are comprised in the yield stress model of Kozar et al. Some of the terms are slightly different from those reported by Kozar et al.[1]

  1. 1.

    Hall–Petch hardening[41,42] of the γ matrix

    $$ \Delta \sigma_{1} = f_{m} \left[ {\sigma_{o} + k_{y} d_{m}^{ - 0.5} } \right], $$
    (A1)

    where fm is the volume fraction and dm is the average diameter of the γ grains, respectively; so is the friction stress and ky is the Hall–Petch coefficient of the γ-matrix.

  2. 2.

    Solid solution strengthening of the γ matrix[43]

    $$ \Delta \sigma_{2} = f_{\text{m}} \Delta \sigma_{\text{ss}} \exp \left( { - {\beta_{1}} T} \right) $$
    (A2)

    with

    $$ \Delta \sigma_{\text{ss}} \, = \,\sum\limits_{i} {s_{i} \sqrt {C_{i} } }, $$
    (A3)

    where si and Ci are the strengthening coefficient and concentration of the ith solid solution element in the γ matrix.[43]. In Eq. (A2), β1 is a constant.

  3. 3.

    Hall–Petch hardening[41,42] of the primary γ′ precipitates

    $$ \Delta \sigma_{3} \, = \;f_{1} \left[ {\sigma_{\text{ogp}} + k_{\text{yp}} d_{1}^{ - 0.5} } \right], $$
    (A4)

    where σogp is the friction stress and kyp is the Hall–Petch coefficient of the primary γ′.

  4. 4.

    Solid strengthening and anomalous hardening of γ′ precipitates[1]

    $$ \Delta \sigma_{4} = \left( {f_{1} + f_{2} } \right)\left[ {\Delta \sigma_{\text{gp}} + q_{1} T + q_{2} T^{2} + q_{3} T^{3} + q_{4} T^{4} } \right] $$
    (A5)

    with

    $$ \Delta \sigma_{\text{gp}} \, = \,\sum\limits_{i} {s_{\text{gi}} \sqrt {C_{\text{gi}} } }, $$
    (A6)

    where sgi and Cgi are the strengthening coefficient and concentration of the ith solid solution element in the γ′. The qi are empirical constants obtained by fitting to the yield strength of γ′, as a function of temperature. Tertiary γ′ precipitates are not included in this term because they are small and are easily sheared with the presence of cross-slip on (001) planes and the formation of K-W locks.

  5. 5.

    Shearing of tertiary γ′ by weak-pair coupling mechanism[44]

    $$ \Delta \sigma_{5} = M\left( {\frac{{\gamma_{\text{APB}} }}{2b}} \right)\left[ {\sqrt {\frac{{\gamma_{\text{APB}} d_{3} }}{{2T_{\text{L}} }}} \left( {\frac{{d_{3} }}{{L_{\text{s}} }}} \right) - \frac{\pi }{4}\left( {\frac{{d_{3} }}{L}} \right)^{2} } \right], $$
    (A7)

    where M is the Taylor factor, TL is the line tension, L is the center and center particle spacing, and Ls is the mean planar spacing. L, Ls, and TL are given by Eqs. [5a], [5b], and [11] in Kozar et al.[1]

  6. 6.

    Shearing of secondary γ′ by strong-pair coupling mechanism[44]

    $$ \Delta \sigma_{6} = M\left( {\frac{{2T_{L} }}{{\pi bL_{x} }}} \right)\left[ {\frac{{\pi d_{2} \gamma_{APB} }}{{2T_{L} }} - 1} \right]^{1/2}, $$
    (A8)

    where Lx is the strong-pair particle spacing given by Eq. [13] in Kozar et al.[1]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K.S. MicroROM: A Physics-Based Constitutive Model for Ni-Based Superalloys. Metall Mater Trans A 49, 5353–5367 (2018). https://doi.org/10.1007/s11661-018-4878-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4878-7

Navigation