Log in

Effect of Boron on the Strength and Toughness of Direct-Quenched Low-Carbon Niobium Bearing Ultra-High-Strength Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of boron on the microstructures and mechanical properties of laboratory-control-rolled and direct-quenched 6-mm-thick steels containing 0.08 wt pct C and 0.02 wt pct Nb were studied. The boron contents were 24 ppm and a residual amount of 4 ppm. Two different finish rolling temperatures (FRTs) of 1093 K and 1193 K (820 °C and 920 °C) were used in the hot rolling trials to obtain different levels of pancaked austenite prior to DQ. Continuous cooling transformation (CCT) diagrams were constructed to reveal the effect of boron on the transformation behavior of these steels. Microstructural characterization was carried out using various microscopy techniques, such as light optical microscopy (LOM) and scanning electron microscopy-electron backscatter diffraction (SEM-EBSD). The resultant microstructures after hot rolling were mixtures of autotempered martensite and lower bainite (LB), having yield strengths in the range 918 to 1067 MPa with total elongations to fracture higher than 10 pct. The lower FRT of 1093 K (820 °C) produced better combinations of strength and toughness as a consequence of a higher degree of pancaking in the austenite. Removal of boron lowered the 34 J/cm2 Charpy-V impact toughness transition temperature from 206 K to 158 K (−67 °C to −115 °C) when the finishing rolling temperature of 1093 K (820 °C) was used without any loss in the strength values compared to the boron-bearing steel. This was due to the finer and more uniform grain structure in the boron-free steel. Contrary to expectations, the difference was not caused by the formation of borocarbide precipitates, as verified by transmission electron microscopy (TEM) investigations, but through the grain coarsening effect of boron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.C. Hwang, S. Lee, J.Y. Yoo, and W.Y. Choo: Mater. Sci. Eng. A, 1998, vol. 252, pp. 256-68.

    Article  Google Scholar 

  2. C. Ouchi: ISIJ Int., 2001, vol. 41, pp. 542-53.

    Article  Google Scholar 

  3. H. Asahi, T. Hara, M. Sugiyama, N. Maruyama, Y. Terada, H. Tamehiro, K. Koyama, S. Ohkita, H. Morimoto, K. Tomioka, N. Doi, M. Murata, N. Ayukawa, H. Akasaki, D.P. Fairchild, M.L. Macia, C.W. Petersen, J.Y. Koo, N.V. Bangaru, and M.J. Luton: Int. J. Offshore Polar Eng., 2004, vol. 14, pp. 11-17.

    Google Scholar 

  4. A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, J.I. Kömi, and A.J. DeArdo: Proc. 2nd Int. Conf. Super-High Strength Steels, Garda, Italy, 2010.

  5. M. Hemmilä, R. Laitinen, T. Liimatainen, and D. Porter: 1st Int. Conf. on Super-High Strength Steels, Rome, 2005.

  6. A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, D.A. Porter, J.I. Kömi, and T.J. Limnell: J. Alloys Compd., 2013, 577, pp. 642-48.

    Article  Google Scholar 

  7. M.C. Somani, D.A. Porter, J. Pyykkönen, J. Tarkka, J. Kömi, and L.P. Karjalainen: Proc. Int. Conf. Microalloyed Steels: Processing, Microstructure, Properties and Performance (MA’07), AIST, University of Pittsburgh, Pittsburgh, PA, 2007, pp. 95–106.

  8. C. Klinkenberg: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4261-66.

    Article  Google Scholar 

  9. A.J. DeArdo: Fundamental Metallurgy of Niobium in Steel, Nb Science and Technology, TMS, Warrendale, PA, 2001, pp. 427-78.

    Google Scholar 

  10. C.R. Simcoe, A.R. Elaea, and G.K. Manning: Trans. TMS-AIME, 1956, vol. 206, pp. 984-88.

    Google Scholar 

  11. B.M. Kapadia, R.M. Brown, and W.J. Murphy: Trans. TMS-AIME, 1968, vol. 242, pp. 1689-94.

    Google Scholar 

  12. A. Brown, J.D Garnish, and R.W.K. Honeycombe: Mater. Sci. Technol., 1974, vol. 8, pp. 317-24.

    Google Scholar 

  13. M. Ueno and T. Inoue: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 210-17.

    Google Scholar 

  14. P. Maitrepierre, J. Rofes-Vernis, and D. Thivellier: Boron in Steel, S.K. Banerji and J.E. Morral, eds., AIME, Warrendale, PA, 1979.

  15. W. Yan, Y.Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2147-58.

    Article  Google Scholar 

  16. A. Ghosh, S. Das, and S. Chatterjee: Mater. Sci. Technol., 2005, vol. 21, pp. 325-33.

    Article  Google Scholar 

  17. J. Hannula: Master’s Thesis, University of Oulu, 2012 (in Finnish).

  18. ISO 6892-1:2009 standard for tensile testing.

  19. European Standard EN 10045-1:1990 E, Metallic Materials–Charpy Impact Test–Part 1: Test Method, March 1990.

  20. W. Oldfield: Curve Fitting Impact Test Data: A Statistical Procedure, ASTM Standardization News, 1975, vol. 3, pp. 24-29.

    Google Scholar 

  21. M.J. EricksonKirk, M.T. EricksonKirk, S. Rosinski, and J. Spanner: J. Pressure Vessel Technol., 2009, vol. 131, pp. 1-12.

    Article  Google Scholar 

  22. R.L. Higginson and C.M. Sellars: Worked Examples in Quantitative Metallography, Maney Publishing, London, 2003.

    Google Scholar 

  23. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Sci. Technol., 2009, vol. 25, pp. 939-46.

    Article  Google Scholar 

  24. X.L. He, M. Djahazi, J.J. Jonas, and J. Jackman: Acta Metall. Mater., 1991, vol. 39, pp. 2295-308.

    Article  Google Scholar 

  25. X.M. Wang and X.L. He: ISIJ Int., 2002, vol. 42, pp. 38-46.

    Article  Google Scholar 

  26. L.J. Drewett, S. Bremer, M. Liebeherr, W. De Waele, A. Martin-Meizoso, J. Brózda, B. Zeislmair, H. Morbacher, D. Porter, and N. Gubeljak: “HIPERC: A Novel, High Performance, Economic Steel Concept for Linepipe and General Structural Use,” Research Fund for Coal and Steel Report, Contract No. RFSR-CT-2005-00027, EUR 24209 EN, 2010.

  27. H. Tamehiro, M. Murata, R. Habu, and M. Nagumo: Trans. ISIJ, 1987, vol. 27, pp. 120-29.

    Article  Google Scholar 

  28. F. Boratto, R. Barbosa, S. Yue, and J.J. Jonas: Proc. Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (THERMEC ’88), I. Tamura, ed., ISIJ, Tokyo, 1988, pp. 383–89.

  29. Z. Aretxabaleta, B. Pereda, and B. Lopez: Mater. Sci. Eng. A, 2014, vol. 600, pp. 37-46.

    Article  Google Scholar 

  30. P.P. Suikkanen: Ph.D. Thesis, University of Oulu, Oulu, 2009, accessed 17 May 2017.

  31. X. Sun, Z. Li, Q. Yong, Z. Yang, H. Dong, and Y Weng: Sci. China Technol. Sci., 2012, vol. 55, pp. 1797-805.

    Article  Google Scholar 

  32. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, p. 1789-99.

    Article  Google Scholar 

  33. S. Zajac, C. Schwinn, and K.H. Tacke: Mater. Sci. Forum, 2005, vols. 500–501, pp. 387-94.

    Article  Google Scholar 

  34. L. Ryde: Mater. Sci. Technol., 2006, vol. 22, pp. 1297-306.

    Article  Google Scholar 

  35. T. Hara, H Asahi, R. Uemori, and H. Tamehiro: ISIJ Int., 2004, vol. 44, pp. 1431-40.

    Article  Google Scholar 

  36. W. Yan, Y.Y. Shan, and K. Yang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1211-22.

    Article  Google Scholar 

  37. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, and M. Thuvander: Acta Mater., 2001, vol. 59, pp. 5845-58.

    Article  Google Scholar 

  38. J. Kömi, L.P. Karjalainen, and D.A. Porter: in Encyclopedia of Iron, Steel, and Their Alloys (EISA), R. Colas and G.E. Totten, eds., CRC Press, Boca Raton, FL, 2015, vol. 2, pp. 1109–25.

  39. S. Morito, H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 237-40.

    Article  Google Scholar 

  40. X. Huang, S. Morito, N. Hansen, and T. Maki: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3517-31.

    Article  Google Scholar 

  41. J.W. Morris, Jr.: Mater. Res. Soc. Symp. Proc., 1999, vol. 539, p. 23-28.

    Article  Google Scholar 

  42. T. Inoue, S. Matsuda, Y. Okamura, and K. Aoki: Trans. Jpn. Inst. Met., 1970, vol. 11, pp. 36-43.

    Article  Google Scholar 

  43. T. Swarr and G. Krauss: Metall. Trans. A, 1976, vol. 7A, pp. 41-48.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of CBMM (Companhia Brasileira de Metalurgia e Mineração) and SSAB Europe Oy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Hannula.

Additional information

Manuscript submitted May 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannula, J., Kömi, J., Porter, D.A. et al. Effect of Boron on the Strength and Toughness of Direct-Quenched Low-Carbon Niobium Bearing Ultra-High-Strength Martensitic Steel. Metall Mater Trans A 48, 5344–5356 (2017). https://doi.org/10.1007/s11661-017-4295-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4295-3

Navigation