Log in

Heterogeneous Creep Deformations and Correlation to Microstructures in Fe-30Cr-3Al Alloys Strengthened by an Fe2Nb Laves Phase

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new Fe-Cr-Al (FCA) alloy system has been developed with good oxidation resistance and creep strength at high temperature. The alloy system is a candidate for use in future fossil-fueled power plants. The creep strength of these alloys at 973 K (700 °C) was found to be comparable with traditional 9 pct Cr ferritic–martensitic steels. A few FCA alloys with general composition of Fe-30Cr-3Al-.2Si-xNb (x = 0, 1, or 2) with a ferrite matrix and Fe2Nb-type Laves precipitates were prepared. The detailed microstructural characterization of samples, before and after creep rupture testing, indicated precipitation of the Laves phase within the matrix, Laves phase at the grain boundaries, and a 0.5 to 1.5 μm wide precipitate-free zone (PFZ) parallel to all the grain boundaries. In these alloys, the areal fraction of grain boundary Laves phase and the width of the PFZ controlled the cavitation nucleation and eventual grain boundary ductile failure. A phenomenological model was used to compare the creep strain rates controlled by the effects of the particles on the dislocations within the grain and at grain boundaries. (The research sponsored by US-DOE, Office of Fossil Energy, the Crosscutting Research Program).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Enviornmental_Protection_Agency, EPA 430-R-16-002, Washington, DC, April 2016.

  2. F. Abe, Sci and Tech of Adv Mat, 2008, 9, 013002.

    Article  Google Scholar 

  3. P. Auerkari, S. Holmström, J. Veivo and J. Salonen, Int. J. Pressure Vessels Pip., 2007, 84, 69-74.

    Article  Google Scholar 

  4. H. Hirata and K. Ogawa, Welding International, 2005, 19, 118-124.

    Article  Google Scholar 

  5. H. Hirata and K. Ogawa, Welding International, 2005, 19, 109-7.

    Article  Google Scholar 

  6. K. Laha, K.S. Chandravathi, P. Parameswaran, and K. BhanuSankaraRao, Metall Mater Trans A, 2008, 40A, 386-397.

    Google Scholar 

  7. S. Tsukamoto, M. Tabuch, T. Shirane and F. Abe, Trends in Welding Research, 2009, pp. 296–302.

  8. Y. Yamamoto, X. Yu, S.S. Babu, and B. Shassere: Proceeding of the 10th Liège Conference on Materials for Advanced Power Engineering, 2014.

  9. F. Abe, Metall Mater Trans A, 2005, 36A, 321-332.

    Article  Google Scholar 

  10. M. Shibuya, Y. Toda, K. Sawada, H. Kushima and K. Kimura, Mat Sci and Eng: A, 2011, 528, 5387-5393.

    Article  Google Scholar 

  11. B. Kuhn, C. A. Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Mat Sci and Eng: A, 2011, 528, 5888-5899.

    Article  Google Scholar 

  12. Y. Yamamoto, B.A. Pint, B. Shassere, and P.S.S. Babu: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 2016.

  13. Y.-T. Chiu and C.-K. Lin, Journal of Power Sources, 2012, 198, 149-157.

    Article  Google Scholar 

  14. F. Abe, T.-U. Kern and R. Viswanathan, Woodhead Publishing, 2008.

  15. ASTM_E8/E8M-16a, 2016.

  16. ASTM_E139-11, 2016.

  17. R. L. Coble, Journal Name: J of App Phy; 1963, 34, 1679-1682.

    Article  Google Scholar 

  18. I. Lifshitz, Soviet Physics JETP, 1963, 17, 909-920.

    Google Scholar 

  19. D. Williams and B. Carter: Springer Science-Business Media, New York, 2009.

  20. T. F. Kelly and M. K. Miller, Review of Scientific Instruments, 2007, 78, 031101.

    Article  Google Scholar 

  21. G. Li, N. Zhao, T. Liu, J. Li, C. He, C. Shi, E. Liu and J. Sha, Mat Sci and Eng: A, 2014, 617, 219-227.

    Article  Google Scholar 

  22. N. Pourkia, M. Emamy, H. Farhangi and S. H. S. Ebrahimi, Mat Sci and Eng: A, 2010, 527, 5318-5325.

    Article  Google Scholar 

  23. B.L. Wu, G.Y. Sha, Y.N. Wang, Y.D. Zhang, and C. Esling: in Materials science forum, Trans Tech Publ, 2007, pp. 917–22.

  24. F. Stein, G. Sauthoff and M. Palm, J of Phase Equilibria, 2002, 23, 480-494.

    Article  Google Scholar 

  25. A. Khvan and B. Hallstedt, Calphad, 2012, 39, 62-69.

    Article  Google Scholar 

  26. T. D. Nguyen, K. Sawada, H. Kushima, M. Tabuchi and K. Kimura, Mat Sci and Eng: A, 2014, 591, 130-135.

    Article  Google Scholar 

  27. J. A. Wert, E. Parker and V. Zackay, Metall Mater Trans A, 1979, 10, 1313-1322.

    Article  Google Scholar 

  28. M. F. Ashby, Acta Metall Mater, 1966, 14, 679-&.

    Article  Google Scholar 

  29. K. Maruyama, K. Sawada and J. Koike, Isij Int, 2001, 41, 641-653.

    Article  Google Scholar 

  30. M. Taneike, F. Abe and K. Sawada, Nature, 2003, 424, 294-296.

    Article  Google Scholar 

  31. J.E. Bird, A.K. Mukherjee, and J.E. Dorn: California Univ., Berkeley, Lawrence Radiation Lab., 1969.

  32. M. F. Ashby, Acta Metall Mater, 1972, 20, 887-897.

    Article  Google Scholar 

  33. T. G. Langdon and F. A. Mohamed, J of Mat Sci, 1978, 13, 1282-1290.

    Article  Google Scholar 

  34. F. A. Mohamed and T. G. Langdon, Metall Mater Trans A, 1974, 5, 2339-2345.

    Google Scholar 

  35. B. A. Shassere, Y. Yamamoto and S. S. Babu, Metall Mater Trans A, 2016, 47, 2188-2200.

    Article  Google Scholar 

  36. J. Wadsworth, O.A. Ruano, and O.D. Sherby: in Minerals, Metal and Materials Society Annual Meeting, San Diego, Calif, 1999.

  37. T. G. Langdon, Philosophical Magazine, 2006, 22, 689-700.

    Article  Google Scholar 

  38. H. Lüthy, R. A. White and O. D. Sherby, Mater Sci Eng, 1979, 39, 211-216.

    Article  Google Scholar 

  39. R. C. Gifkins, Metall Trans A, 1976, 7, 1225-1232.

    Article  Google Scholar 

  40. L.-B. Niu, A. Katsuta, M. Kobayashi and H. Takaku, Isij Int, 2003, 43, 251-255.

    Article  Google Scholar 

  41. X. J. Wu and A. K. Koul, Metall Mater Trans A, 1995, 26, 905-14.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. **nghua Yu and Thomas Muth at Oak Ridge National Laboratory for their comments on this manuscript. Research sponsored by the Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Shassere.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted April 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shassere, B., Yamamoto, Y., Poplawsky, J. et al. Heterogeneous Creep Deformations and Correlation to Microstructures in Fe-30Cr-3Al Alloys Strengthened by an Fe2Nb Laves Phase. Metall Mater Trans A 48, 4598–4614 (2017). https://doi.org/10.1007/s11661-017-4274-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4274-8

Navigation