Log in

Carbon Redistribution and Carbide Precipitation in a High-Strength Low-Carbon HSLA-115 Steel Studied on a Nanoscale by Atom Probe Tomography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

HSLA-115 is a newly developed Cu-bearing high-strength low-carbon martensitic steel for use in Naval structural applications. This research provides, for the first time, a comprehensive compositional analysis of carbon redistribution and associated complex phase transformations in an isothermal aging study of HSLA-115 at 823 K (550 °C). Specifically, we characterize carbon segregation at lath boundaries, grain-refining niobium carbonitrides, cementite, and secondary hardening M2C carbides, in addition to copper precipitation, by 3D atom probe tomography (APT). Segregation of carbon (3 to 6 at. pct C) is observed at martensitic lath boundaries in the as-quenched and 0.12-hour aged microstructures. On further aging, carbon redistributes itself forming cementite and M2C carbides. Niobium carbonitride precipitates do not dissolve during the austenitizing treatment and are inherited in the as-quenched and aged microstructures; these are characterized along with cementite by synchrotron X-ray diffraction and APT. Sub-nanometer-sized M2C carbide precipitates are observed after the formation of Cu precipitates, co-located with the latter, indicating heterogeneous nucleation of M2C. The temporal evolution of the composition and morphology of M2C carbides at 823 K (550 °C) is described using APT; their precipitation kinetics is intertwined with Cu precipitates, affecting the bulk mechanical properties of HSLA-115. Phase compositions determined by APT are compared with computed compositions at thermodynamic equilibrium using ThermoCalc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Microalloyed HSLA Steels, ASM International, Metals Park, OH, 1988, pp 259-75.

    Google Scholar 

  2. E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, and J.P. Gudas: Nav. Eng. J., 1990, vol. 102, pp. 63-82.

    Article  Google Scholar 

  3. L.G. Kvidahl: Weld. J., 1985, vol. 64, pp. 42-48.

    Google Scholar 

  4. C.S. Smith and E.W. Palmer: Trans. AIME, 1933, vol. 104, pp. 133-68.

    Google Scholar 

  5. E.J. Czyryca: Key Eng. Mater., 1993, vol. 84, pp. 491-520.

    Article  Google Scholar 

  6. P.J. Konkol, K.M. Stefanick, and G.S. Pike: Weld. J., 2011, vol. 90, pp. 34-41.

    Google Scholar 

  7. C. Revising: Report No. GAO-15-22, United States Government Accountability Office, Washington, DC, November 2014.

  8. R.P. Foley and M.E. Fine: International Conference on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Warrendale, PA, 1991, pp. 315–30.

  9. D. Jain, D. Isheim, A.H. Hunter, and D.N. Seidman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3860-72.

    Article  Google Scholar 

  10. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277-93.

    Article  Google Scholar 

  11. L.J. Cuddy and J.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989-95.

    Article  Google Scholar 

  12. T. Gladman: Proc. R. Soc. A, 1966, vol. 294, pp. 298-309.

    Article  Google Scholar 

  13. M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty: ISIJ Int. 2003, vol. 43, pp. 1431-37.

    Article  Google Scholar 

  14. G.R. Speich, D.S. Dabkowski, and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303-15.

    Article  Google Scholar 

  15. G. Krauss: Steels: Processing, Structure, and Performance, ASM International, Materials Park, OH, 2005, pp. 338-39.

    Google Scholar 

  16. B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom Probe Microscopy, Springer, New York, NY, 2012.

    Book  Google Scholar 

  17. T.F. Kelly and M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101.

    Article  Google Scholar 

  18. D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127-58.

    Article  Google Scholar 

  19. A. Saha and G.B. Olson: J. Comput. Aided Mater. Des., 2007, vol. 14, pp. 177-200.

    Article  Google Scholar 

  20. A. Saha, J. Jung, and G.B. Olson: J. Comput. Aided Mater. Des., 2007, vol. 14, pp. 201-33.

    Article  Google Scholar 

  21. M.D. Mulholland and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 1881-97.

    Article  Google Scholar 

  22. J.S. Wang, M.D. Mulholland, G.B. Olson, and D.N. Seidman: Acta Mater., 2013, vol. 61, pp. 4939-52.

    Article  Google Scholar 

  23. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi: Acta Mater., 2013, vol. 61, pp. 6132-52.

    Article  Google Scholar 

  24. R.C. Thomson and M.K. Miller: Acta Mater., 1998, vol. 46, pp. 2203-13.

    Article  Google Scholar 

  25. G.B. Olson, T.J. Kinkus, and J.S. Montgomery: Surf. Sci., 1991, vol. 246, pp. 238-45.

    Article  Google Scholar 

  26. A. Afrouz, M.J. Collins, and R. Pilkington: Met. Technol., 1983, vol. 10, pp. 461-63.

    Article  Google Scholar 

  27. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437-44.

    Google Scholar 

  28. R.P. Kolli and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 2073-88.

    Article  Google Scholar 

  29. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2001, p. 351.

    Google Scholar 

  30. S.K. Dhua, D. Mukerjee, and D.S. Sarma: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2259-70.

    Article  Google Scholar 

  31. F.D. Geuser and W. Lefebvre: Microsc. Res. Tech., 2011, vol. 74, pp. 257-63.

    Article  Google Scholar 

  32. S. Morito, K. Oh-ishi, K. Hono, and T. Ohba: ISIJ Int., 2011, vol. 51, pp. 1200-02.

    Article  Google Scholar 

  33. L. Morsdorf, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2015, vol. 95, pp. 366-77.

    Article  Google Scholar 

  34. M.K. Miller, P.A. Beaven, and G.D.W. Smith: Metall. Trans. A, 1981, vol. 12, pp. 1197-1204.

    Article  Google Scholar 

  35. C. Lerchbacher, S. Zinner, and H. Leitner: Micron, 2012, vol. 43, pp. 818-26.

    Article  Google Scholar 

  36. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, and M. Thuvander: Acta Mater., 2011, vol. 59, pp. 5845-58.

    Article  Google Scholar 

  37. G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273, pp. 40-57.

    Article  Google Scholar 

  38. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-27.

    Google Scholar 

  39. G.R. Speich: Trans. Met. Soc. AIME, 1969, vol. 245, pp. 2553-64.

    Google Scholar 

  40. E. Bemont, E. Cadel, P. Maugis, and D. Blavette: Surf. Interface Anal., 2004, vol. 36, pp. 585-88.

    Article  Google Scholar 

  41. R.P. Kolli and D.N. Seidman: Microsc. Microanal., 2014, vol. 20, pp. 1727-39.

    Article  Google Scholar 

  42. A.J. Breen, K.Y. **e, M.P. Moody, B. Gault, H.W. Yen, C.C. Wong, J.M. Cairney, and S.P. Ringer: Microsc. Microanal., 2014, vol. 20, pp. 1100-10.

    Article  Google Scholar 

  43. K. Miyata, T. Kushida, T. Omura, and Y. Komizo: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1565-73.

    Article  Google Scholar 

  44. W. Sha, L. Chang, G.D.W. Smith, L. Cheng, and E.J. Mittemeijer: Surf. Sci, 1992, vol. 266, pp. 416-23.

    Article  Google Scholar 

  45. J.K. Stanley: Trans. AIME, 1949, vol. 185, pp. 752-61.

    Google Scholar 

  46. V.T. Borisov, V.M. Golikov, and G.V. Sherbedinskiy: Phys. Met. Metallogr, 1966, vol. 22, pp. 175-76.

    Google Scholar 

  47. C.J. Smithells, E.A. Brandes, and G.B. Brook: Smithells Metals Reference Book, Butterworth-Heinemann, Oxford, 1992.

    Google Scholar 

  48. A.W. Bowen and G.M. Leak: Metall. Trans., 1970, vol. 1, pp. 1695-1700.

    Article  Google Scholar 

  49. R.J. Borg and D.Y.F. Lai: J. Appl. Phys., 1970, vol. 41, pp. 5193-5200.

    Article  Google Scholar 

  50. G. Ghosh and G.B. Olson: Acta Mater., 2002, vol. 50, pp. 2099-2119.

    Article  Google Scholar 

  51. W. Song, J. von Appen, P. Choi, R. Dronskowski, D. Raabe, and W. Bleck: Acta Mater., 2013, vol. 61, pp. 7582-90.

    Article  Google Scholar 

  52. S.S. Babu, K. Hono, and T. Sakurai: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 499-508.

    Article  Google Scholar 

  53. L. Chang and G.D.W. Smith: Le Journal de Physique Colloques, 1984, vol. 45, pp. C9-397–C9-401.

  54. C. Zhu, X.Y. **ong, A. Cerezo, R. Hardwicke, G. Krauss, and G.D.W. Smith: Ultramicroscopy, 2007, vol. 107, pp. 808-12.

    Article  Google Scholar 

  55. M. Thuvander, J. Weidow, J. Angseryd, L.K.L. Falk, F. Liu, M. Sonestedt, K. Stiller, and H.O. Andrén: Ultramicroscopy, 2011, vol. 111, pp. 604-08.

    Article  Google Scholar 

  56. D.W. Saxey: Ultramicroscopy, 2011, vol. 111, pp. 473-79.

    Article  Google Scholar 

  57. R.P. Kolli and D.N. Seidman: Microsc. Microanal., 2007, vol. 13, pp. 272-84.

    Article  Google Scholar 

  58. W.S. Owen: Trans. ASM, 1954, vol. 46, pp. 812-29.

    Google Scholar 

  59. H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. A, 1979, vol. 10A, pp. 895-907.

    Article  Google Scholar 

  60. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027-38.

    Article  Google Scholar 

  61. J. Takahashi, K. Kawakami, and Y. Kobayashi: Ultramicroscopy, 2011, vol. 111, pp. 1233-38.

    Article  Google Scholar 

  62. B.L. Tiemens, A.K. Sachdev, R.K. Mishra, and G.B. Olson: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3626-35.

    Article  Google Scholar 

  63. R.C. Glenn and E. Hornbogen: Trans. Metall. Soc. AIME, 1960, vol. 218, pp. 1064-70.

    Google Scholar 

  64. S.R. Goodman, S.S. Brenner, and J.R. Low: Metall. Trans., 1973, vol. 4, pp. 2363-69.

    Article  Google Scholar 

  65. S. Pizzini, K.J. Roberts, W.J. Phythian, C.A. English, and G.N. Greaves: Philos. Magn. Lett., 1990, vol. 61, pp. 223-29.

    Article  Google Scholar 

  66. P.J. Othen, M.L. Jenkins, G.D.W. Smith, and W.J. Phythian: Philos. Magn. Lett., 1991, vol. 64, pp. 383-91.

    Article  Google Scholar 

  67. P.J. Othen, M.L. Jenkins, and G.D.W. Smith: Philos. Magn. A, 1994, vol. 70, pp. 1-24.

    Article  Google Scholar 

  68. G.R. Speich and R.A. Oriani: Trans. Met. Soc. AIME, 1965, vol. 233, pp. 623-31.

    Google Scholar 

  69. F.R.N. Nabarro: Proc. R. Soc. A, 1940, vol. 175, pp. 519-38.

    Article  Google Scholar 

  70. D.J. Dyson, S.R. Keown, D. Raynor, and J.A. Whiteman: Acta Metall., 1966, vol. 14, pp. 867-75.

    Article  Google Scholar 

  71. D. Raynor, J.A. Whiteman, and R.W.K. Honeycombe: Iron Steel Inst. J., 1966, vol. 204, pp. 349-54.

    Google Scholar 

  72. W. Rong and G.L. Dunlop: Acta Metall., 1984, vol. 32, pp. 1591-99.

    Article  Google Scholar 

  73. J.A. Liddle, G.D.W. Smith, and G.B. Olson: Le Journal de Physique Colloques, 1986, vol. 47, pp. C7-223–C7-31.

  74. Y.N. Shi and P.M. Kelly: J. Mater. Sci., 2002, vol. 37, pp. 2077-85.

    Article  Google Scholar 

  75. J. Akré, F. Danoix, H. Leitner, and P. Auger: Ultramicroscopy, 2009, vol. 109, pp. 518-23.

    Article  Google Scholar 

  76. J.S. Montgomery and G.B. Olson: Innovations in Ultrahigh Strength Steel Technology, in Proceeding of 34th Sagamore Army Materials Research Conference, G.B. Olson, M. Azrin, and E.S. Wright, eds., US Army Materials Technology Laboratory, Watertown, MA, 1990, pp 147–78.

  77. S.R. Goodman, S.S. Brenner, and J.R. Low: Metall. Trans., 1973, vol. 4, pp. 2371-78.

    Article  Google Scholar 

  78. D. Isheim, M.S. Gagliano, M.E. Fine, and D.N. Seidman: Acta Mater., 2006, vol. 54, pp. 841-49.

    Article  Google Scholar 

  79. D. Isheim, R.P. Kolli, M.E. Fine, and D.N. Seidman: Scr. Mater., 2006, vol. 55, pp. 35-40.

    Article  Google Scholar 

  80. F. Maury, N. Lorenzelli, and C.H. De Novion: J. Nucl. Mater., 1991, vol. 183, pp. 217-20.

    Article  Google Scholar 

  81. K. Osamura, H. Okuda, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, and R. Uemori: ISIJ Int., 1994, vol. 34, pp. 346-54.

    Article  Google Scholar 

  82. F. Vurpillot, A. Bostel, and D. Blavette: Appl. Phys. Lett., 2000, vol. 76, pp. 3127-29.

    Article  Google Scholar 

  83. M.E. Fine, J.Z. Liu, and M.D. Asta: Mater. Sci. Eng. A, 2007, vol. 463, pp. 271-74.

    Article  Google Scholar 

  84. M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, and Y.W. Chung: Acta Mater., 2014, vol. 73, pp. 56-74.

    Article  Google Scholar 

  85. M. Perez, F. Perrard, V. Massardier, X. Kleber, A. Deschamps, H. De Monestrol, P. Pareige, and G. Covarel: Philos. Magn., 2005, vol. 85, pp. 2197-2210.

    Article  Google Scholar 

  86. F. Liu and H.O. Andrén: Ultramicroscopy, 2011, vol. 111, pp. 633-41.

    Article  Google Scholar 

  87. M.D. Mulholland and D.N. Seidman: Microsc. Microanal., 2011, vol. 17, pp. 950-62.

    Article  Google Scholar 

  88. G.M. Carinci, M.G. Hetherington, and G.B. Olson: Le Journal de Physique Colloques, 1988, vol. 49, pp. C6-311–C6-16.

  89. H.F. Fischmeister, S. Karagöz, and H.O. Andren: Acta Metall., 1988, vol. 36, pp. 817-25.

    Article  Google Scholar 

  90. K. Stiller, L.E. Svensson, P.R. Howell, W. Rong, H.O. Andren, and G.L. Dunlop: Acta Metall., 1984, vol. 32, pp. 1457-67.

    Article  Google Scholar 

  91. H. Morikawa, H. Komatsu, and M. Tanino: J. Electron Microsc., 1973, vol. 22, pp. 99-101.

    Google Scholar 

  92. R. Ayer and P.M. Machmeier: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2510-17.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided for this research by the Office of Naval Research (ONR), through Grant Numbers N000141210475 and N000141210425, and useful discussions with the program manager, Dr. William Mullins. Atom probe tomographic measurements were performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph at NUCAPT was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781). Instrumentation at NUCAPT was supported by the Initiative for Sustainability and Energy at Northwestern University (ISEN), Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205), and the MRSEC program (NSF DMR-1121262) through Northwestern’s Materials Research Center. X-ray diffraction experiments were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center located at Sector 5 of the Advanced Photon Source (APS). Dr D.T. Keane (DND beamline) is kindly thanked for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Jain.

Additional information

Manuscript submitted January 30, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, D., Isheim, D. & Seidman, D.N. Carbon Redistribution and Carbide Precipitation in a High-Strength Low-Carbon HSLA-115 Steel Studied on a Nanoscale by Atom Probe Tomography. Metall Mater Trans A 48, 3205–3219 (2017). https://doi.org/10.1007/s11661-017-4129-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4129-3

Keywords

Navigation