Log in

In Situ Observation of Austenite Growth During Continuous Heating in Very-Low-Carbon Fe-Mn and Ni Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The growth of austenite during continuous heating was observed in situ under a confocal scanning laser microscope in Fe-Mn and Ni alloys containing less than 0.01 mass pct C. The advancements of the α/γ boundary were measured in the temperature range of ca. 40 K, which encompassed the Ae3 line of the alloys. Below Ae3, the growth rates were of the same order of magnitude as those predicted from the carbon diffusion-controlled negligible partition local equilibrium in the (α + γ) two-phase region, whereas those observed near and above the Ae3 were ca. two orders of magnitude greater. The α/γ boundary mobilities evaluated therefrom were somewhat smaller than those obtained previously in massive ferrite transformation during continuous cooling in the same alloys, albeit the experimental scatter was large and fell near the mobilities proposed in the literature. The α/γ boundary migrated probably with a carbon diffusion spike ahead of the boundary and the solute drag of the carbon or alloy element is unlikely to be operative during the growth of austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Hillert: Metall. Trans A, 1975, vol. 6A, pp. 5–19.

    Article  Google Scholar 

  2. H.I. Aaronson, W.T. Reynolds, and G.R. Purdy: Metal. Mater. Trans. A, 2000, vol. 31A, pp. 379–85.

    Google Scholar 

  3. H.I. Aaronson, M. Enomoto, and J.K. Lee: Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL, 2010, pp. 1–47.

    Book  Google Scholar 

  4. G.P Krielaart, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng., 1997, vol. 237A, pp. 216–23.

    Article  Google Scholar 

  5. J.J. Wits, T.A. Kop, T. van Leeuwen, J. Seitsma, and S. van der Zwaag: Mater. Sci. Eng. A, 2000, vol. 283, pp. 234–41.

    Article  Google Scholar 

  6. S.I. Vooijs, Y. van. Leeuwen, J. Sietsma, and S.van der Zwaag: Metal. Mater. Trans. A, 2000, vol. 31A, pp. 379–85.

  7. E. Kzeschnik and E. Gamsjäger: Metal. Mater. Trans. A, 2006, vol. 37A, pp. 1791–1797.

    Article  Google Scholar 

  8. E. Gamsjäger, M. Wiessner, S. Shider, H. Chen, and S. Van der Zwaag: Phil. Mag., 2015, vol. 95, pp. 2899–917.

    Article  Google Scholar 

  9. E. Gamsjäger, M. Militzer, F. Fazeli, J. Svoboda, and F.D. Fisher: Comp. Mater. Sci., 2006, vol. 37, pp. 94–100.

    Article  Google Scholar 

  10. E. Gamsjäger, H. Chen, and S. Van der Zwaag: Comp. Mater. Sci., 2014, vol. 83, pp. 92–100.

    Article  Google Scholar 

  11. J. Hamada, M. Enomoto, T. Fujishiro, and T. Akatsuka: Metal. Mater. Trans. A, 2014, vol. 45A, pp. 3781–89.

    Article  Google Scholar 

  12. H. Chikama, H. Shibata, T. Emi, and M. Suzuki: Mater. Trans., JIM, 1996, vol. 37, pp. 620–26.

  13. D. Phelan and R. Dippenaar: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3701–16.

    Article  Google Scholar 

  14. Thermo-calc is Trademark of Thermo-Calc Software: http://www.thermocalc.com/.

  15. T.B. Massalski: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2277–83.

    Article  Google Scholar 

  16. T.B. Massalski: Phase Transformations, ASM, Materials Park, OH, 1970, pp. 433–85.

    Google Scholar 

  17. G.R. Speich and M. Cohen: Trans. TMS-AIME, 1960, vol. 218, pp. 1050–59.

    Google Scholar 

  18. X.L. Wan, R. Wei, L. Cheng, M. Enomoto, and Y. Adachi: J. Mater. Sci., 2013, vol. 48, pp. 4345–55.

    Article  Google Scholar 

  19. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3531–40.

    Article  Google Scholar 

  20. K.M. Wu, M. Kagayama, and M. Enomoto: Mater.Sci.Eng., 2003, vol. A343, pp. 143–50.

    Article  Google Scholar 

  21. H. Guo and M. Enomoto: Metal. Mater. Trans. A, 2007, vol. 38A, pp. 1152–61.

    Article  Google Scholar 

  22. M. Enomoto: Metal. Mater. Trans. A, 2002, vol. 33A, pp. 2309–16.

    Article  Google Scholar 

  23. J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.

    Article  Google Scholar 

  24. H.J. Lee and H.I. Aaronson: J. Mater. Sci., 1988, vol. 23, pp. 150–60.

    Article  Google Scholar 

  25. H. Chen, B. Appolaire, and S. van der Zwaag: Acta Mater., 2011, vol. 59, pp. 6751–60.

    Article  Google Scholar 

  26. M. Hillert and L. Höglund: Scripta Mater., 2006, vol. 54, pp. 1259–63.

    Article  Google Scholar 

  27. Y.C. Liu, F. Sommer, and E.J. Mittemeijer: Phil.Mag., 2004, vol. 84, pp. 1853–76.

    Article  Google Scholar 

  28. G.R. Speich and A. Szirmae: Trans. AIME, 1969, vol. 245, pp. 1063–74.

    Google Scholar 

  29. M. Enomoto and K. Hayashi: J. Mater. Sci, 2015, vol. 50, pp. 6786–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

Manuscript submitted March 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enomoto, M., Wan, X.L. In Situ Observation of Austenite Growth During Continuous Heating in Very-Low-Carbon Fe-Mn and Ni Alloys. Metall Mater Trans A 48, 1572–1580 (2017). https://doi.org/10.1007/s11661-017-3961-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3961-9

Keywords

Navigation