Log in

Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solutionizing and quenching are the key steps in the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers as they highly impact the mechanical characteristics of the product. In particular, quenching induces residual stresses that can cause unacceptable distortions during machining and unfavorable stresses in service. Predicting and controlling stress generation during quenching of large AA2618 forgings are therefore of particular interest. Since possible precipitation during quenching may affect the local yield strength of the material and thus impact the level of macroscale residual stresses, consideration of this phenomenon is required. A material model accounting for precipitation in a simple but realistic way is presented. Instead of modeling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. This material model is presented, calibrated, and validated against constrained coolings in a Gleeble blocked-jaws configuration. Applications of this model are FE computations of stress generation during quenching of large AA2618 forgings for compressor impellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Dubost, M. Bouet-Griffon, P.H. Jeanmart, and M.O. Homette: Proceedings of the International Conference on Residual Stresses, Edited by: G. Beck, S. Denis, and A. Simon, Springer, 1989, pp. 581–86.

  2. J.C. Boyer and M. Boivin: Mater. Sci. Technol., 1985, vol. 1, pp. 786–92.

    Article  Google Scholar 

  3. N. Chobaut, D. Carron, and J.-M. Drezet: J Alloys Compd., 2016, vol. 654, pp. 56–62.

    Article  Google Scholar 

  4. P. Schloth, A. Menzel, J.L. Fife, J.N. Wagner, H. Van Swygenhoven, and J.-M. Drezet, Scr. Mater., 2015, vol. 108, pp. 56–9.

    Article  Google Scholar 

  5. D. Godard, P. Archambault, S. Denis, E. Gautier, and F. Heymes: Proceedings of the 7th International Seminar of IFHT on Heat Treatment and Surface Engineering of Light Alloys, Edited by: J. Lendvai and T. Réti, 1999, pp. 249–57.

  6. J. Mackerle: Comput. Mater. Sci., 2003, vol. 27, pp. 313–32.

    Article  Google Scholar 

  7. J.S. Robinson, D.A. Tanner, and C.E. Truman: Strain, 2014, vol. 50, pp. 185–207.

    Article  Google Scholar 

  8. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier: Acta Mater., 2014, vol. 62, pp. 129–40.

    Article  Google Scholar 

  9. A. Deschamps and Y. Brechet: Acta Mater., 1998, vol. 47, pp. 293–305.

    Article  Google Scholar 

  10. S. Gouttebroze, A. Mo, Ø. Grong, K.O. Pedersen, and H.G. Fjær: Metall. Mater. Trans. A, 2008, vol. 39, pp. 522–34.

    Article  Google Scholar 

  11. D. Godard, P. Archambault, J.-P. Houin, E. Gautier, and F. Heymes: Proceedings of ICAA6, Edited by: T. Sato, S. Kumai, T. Kobayashi, and Y. Murakami, 1998, pp. 1033–8.

  12. M. Reich and O. Kessler: Mater. Sci. Technol., 2012, vol. 28, pp. 769–72.

    Article  Google Scholar 

  13. N. Chobaut, D. Carron, S. Arsène, P. Schloth, and J.-M. Drezet: J. Mater. Process. Technol., 2015, vol. 222, pp. 373–80.

    Article  Google Scholar 

  14. K. Satoh: Trans. Jpn. Weld. Soc., 1972, vol. 3, pp. 125–34.

    Google Scholar 

  15. Z.L. Zhang, Ø. Gundersen, R. Aune, J. Ødegård, and Ø. Grong: Comput. Mater. Sci., 2005, vol. 34, pp. 35–45.

    Article  Google Scholar 

  16. J. Lemaître and J.-L. Chaboche: Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK, 1990.

    Book  Google Scholar 

  17. S. Denis, P. Archambault, E. Gautier, A. Simon, and G. Beck: J. Mater. Eng. Perform., 2002, vol. 11, pp. 92–102.

    Article  Google Scholar 

  18. O.R. Myhr, Ø. Grong, and S.J. Andersen, Acta Mater., 2001, vol. 49, pp. 65–75.

    Article  Google Scholar 

  19. N. Chobaut: EPFL Ph.D. Thesis n°6559, 2015, DOI:10.5075/epfl-thesis-6559, http://infoscience.epfl.ch/record/205768/files/EPFL_TH6559.pdf.

  20. C. Zhang, M. Bellet, M. Bobadilla, H. Shen, and B. Liu: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2304–17.

    Article  Google Scholar 

  21. S.G.R. Brown, J.D. James, and J.A. Spittle: Model. Simul. Mater. Sci. Eng., 1997, vol. 5, pp. 539–48.

    Article  Google Scholar 

  22. S.D. Norris and I. Wilson: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 297–309.

    Article  Google Scholar 

  23. D.R. Pitts and L.E. Sissom: Theory and Problems of Heat Transfer, McGraw_Hill, New York, USA, 1977.

  24. P. Pilvin and G. Cailletaud: Proceedings of the Second International Symposium on Inverse Problems, Edited by: H.D. Bui, M. Tanaka, M. Bonnet, H. Maigre, E. Luzzato, and M. Reynier, Balkema, 1994, pp. 79–86.

  25. B. Magnin, L. Maenner, L. Katgerman, and S. Engler: Mater. Sci. Forum, 1996, vol. 217, pp. 1209–14.

    Article  Google Scholar 

  26. N. Chobaut, P. Saelzle, G. Michel, D. Carron, and J.-M. Drezet: JOM, 2015, vol. 67, pp. 984–90.

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Competence Center for Materials Science and Technology in the frame of the project entitled “Measurements and modeling of residual stress during quenching of thick heat-treatable aluminum components in relation to their microstructure” involving EPF Lausanne, PSI Villigen, Univ. Bretagne Sud Lorient, Constellium and ABB Turbo Systems Ltd. The Gleeble 3500 machine of Univ. BretagneSud was co-financed by European Regional Development Fund. The authors are grateful to Professor P. Pilvin and W. Berckmans (Univ. Bretagne Sud) for providing SiDoLo and for the instrumentation of the Gleeble specimens, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Drezet.

Additional information

Manuscript submitted April 7, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chobaut, N., Carron, D., Saelzle, P. et al. Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling. Metall Mater Trans A 47, 5641–5649 (2016). https://doi.org/10.1007/s11661-016-3724-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3724-z

Keywords

Navigation