Log in

Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Huang, Z.J., Wang, Y.Q., and Chu, C.W.: Phys Rev Lett., 1987, vol. 58 (9), pp. 908–10.

    Article  Google Scholar 

  2. W. Haynes, D. Lide, and T. Bruno: CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 2015.

    Google Scholar 

  3. Shinya Kuriki, Kenichi Takahashi, Yohei Kawaguchi et al.: Supercond. Sci. Technol., 2002, vol. 15, pp. 1693–97.

    Article  Google Scholar 

  4. J. Bednorz and K. Muller: Z. Physica B Condens. Mat., 1986, vol. 64 (2), pp. 189–93.

  5. P. Mohanty, J. Wei, V. Ananth, P. Morales, and W. Skocpol: Phys. C, 2004, vols. 408–410, pp. 666–69.

    Article  Google Scholar 

  6. R. Bhatt: 2013 3rd Int. Conf. on Advanced Computing and Communication Technologies, ACCT, 2013.

  7. L. Pathak and S. Mishra: Supercond. Sci. Technol., 2005, vol. 18 (9), pp. R67–R89.

    Article  Google Scholar 

  8. A. Wang, H. Han, M. Li, J. **e, Q. Wu, and D. Ma: KEM, 2015, vols. 645–646, pp. 145–50.

    Article  Google Scholar 

  9. Sedigheh Dadras and Elaheh Aawani: Phys. B, 2015, vol. 475, pp. 27–31.

    Article  Google Scholar 

  10. W. Chen, X. Wu, J. Geng, J. Chen, D. Chen, and X. **: J. Supercond., 1997, vol. 10 (1), pp. 41–44.

    Article  Google Scholar 

  11. R. Cava, B. Batlogg, R. van Dover, D. Murphy, S. Sunshine, and T. Siegrist: Phys. Rev. Lett., 1987, vol. 58 (16), pp. 1676–79.

    Article  Google Scholar 

  12. E. Lucas, Z. Stekly, A. Foldes, and R. Milton: IEEE Trans. Magn., 1967, vol. 3 (3), pp. 280–83.

    Article  Google Scholar 

  13. G. Indira, M. Uma, T. Rao, and S. Chandramohan: Phys. C, 2015, vol. 508, pp. 69–74.

    Article  Google Scholar 

  14. S. Lee, J. Ko, H. Kim, and H. Chung: Jpn. J. Appl. Phys., 1991, vol. 30 (Part 1, No. 1), pp. 43–47.

  15. W. Chen, N. Chen, C. Lam, J. Chen, X. Wu, and X. Zhang: Phys. C, 1997, vols. 282–287, pp. 1435–36.

    Article  Google Scholar 

  16. H. Blackstead, J. Dow, and D. Pulling: Phys. C, 1996, vol. 265 (1–2), pp. 143–49.

    Article  Google Scholar 

  17. A. Fukuoka, M. Karppinen, N. Seiji, J. Valo, A. Kareiva, and L. Niinisto: Supercond. Sci. Technol., 1995, vol. 8 (8), pp. 673–75.

    Article  Google Scholar 

  18. P. Huong, A. Verma, J. Chaminade, L. Nganga, and J. Frison: Mater. Sci. Eng., 1990, vol. 5 (2), pp. 255–60.

    Article  Google Scholar 

  19. T. Nedeltcheva: Anal. Chim. Acta, 1995, vol. 312 (2), pp. 223–26.

    Article  Google Scholar 

  20. T. Nedeltcheva and L. Vladimirova: Anal. Chim. Acta, 2001, vol. 437 (2), pp. 259–63.

    Article  Google Scholar 

  21. A. Ono: Jpn. J. Appl. Phys., 1987, vol. 26 (Part 2, No. 7), pp. L1223–L1225.

  22. P. Benzi, E. Bottizzo, and N. Rizzi: J. Cryst. Growth, 2004, 269 (2–4), pp. 625–29.

    Article  Google Scholar 

  23. S. Zhang, J. Liu, J. Feng, C. Li, X. Ma, and P. Zhang: J. Materiom., 2015, vol. 1 (2), pp. 118–23.

    Google Scholar 

  24. S. Zhang, J. Liu, J. Feng, Y. Wang, X. Ma, and C. Li: Mater. Chem. Phys., 2015, vol. 163, pp. 587–93.

    Article  Google Scholar 

  25. A. Hamrita, F. Ben Azzouz, A. Madani, and M. Ben Salem: Physica C, 2012, vol. 472 (1), pp. 34–38.

  26. A. Hamrita, Y. Slimani, M. Ben Salem, E. Hannachi, L. Bessais, and F. Ben Azzouz: Ceram. Int., 2014, vol. 40 (1), pp. 1461–70.

  27. E. Hannachi, M. Ben Salem, Y. Slimani, A. Hamrita, M. Zouaoui, and F. Ben Azzouz: Physica B, 2013, vol. 430, pp. 52–57.

  28. E. Hannachi, Y. Slimani, M. Ben Salem, A. Hamrita, and D. Mani: Mater. Chem. Phys., 2015, vol. 159, pp. 185–93.

    Article  Google Scholar 

  29. G. Conciauro and M. Puglisi: Accelerator Department, Brookhaven National Laboratory, Upton, NY, 1981, accessed online via http://www.osti.gov/scitech/servlets/purl/6001203.

  30. T. Gür: J. Electrochem. Soc., 1993, vol. 140 (7), p. 1990.

  31. A. Alami, A. Alketbi, J. Abed, and M. Almheiri: Int. J. Energy Res., 2016, vol. 40, 514–21.

  32. M. Bachtler, W.J. Lorenz, W. Schindler, and G. Saemann-Ischenko: Mod. Phys. Lett. B, 1988, vol. 2 (6), pp. 819–28.

    Article  Google Scholar 

  33. T. Nojima, H. Tada, S. Nakamura, N. Kobayashi, H. Shimotani, and Y. Iwasa: Phys. Rev. B, 2011, vol. 84 (2), p. 020502(R).

  34. S. Sugai, H. Suzuki, Y. Takayanagi, T. Hosokawa, and N. Hayamizu: Phys. Rev. B, 2003, vol. 68 (18), p. 184504.

  35. Clarke, A.P.: All Graduate Theses and Dissertations, Paper No. 88, 2008, http://digitalcommons.usu.edu/etd/88, last accessed online Mar. 27, 2016.

  36. L. Pathak: Ceram. Int., 2004, vol. 30 (3), pp. 417–27.

    Article  Google Scholar 

  37. A. Gupta, R. Jagannathan, E. Cooper, E. Giess, J. Landman, and B. Hussey: Appl. Phys. Lett., 1988, vol. 52 (24), p. 2077.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Hai Alami.

Additional information

Manuscript submitted April 7, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alami, A.H., Assad, M.A. & Aokal, C. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling. Metall Mater Trans A 47, 6160–6168 (2016). https://doi.org/10.1007/s11661-016-3701-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3701-6

Keywords

Navigation