Log in

FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during sha** of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.L. Schulz: Nucl. Eng. Des., 2006, vol. 236, pp. 1547-57.

    Article  Google Scholar 

  2. H.C. Wu, B. Yang, S.L. Wang, and M.X. Zhang: Mater. Sci. Eng. A, 2015, vol. 633, pp. 176-83.

    Article  Google Scholar 

  3. H. Cho, B.K. Kim, I.S. Kim, and C. Jang: Mater. Sci. Eng. A, 2008, vol. 476, pp. 248-256.

    Article  Google Scholar 

  4. E.I. Samuel, B.K. Choudhary, and K.B.S. Rao: Scripta Mater., 2002, vol. 46, pp. 507-12.

    Article  Google Scholar 

  5. P.P. Li, Y.X. Zhong, and Q.X. Ma: Met. Forming Equip. Manuf. Technol., 2011, vol. 42, pp. 13-17.

    Google Scholar 

  6. X.W. Duan, and J.S. Liu: Mater. Sci. Eng. A, 2013, vol. 588, pp. 265-71.

    Article  Google Scholar 

  7. X.W. Duan, and J.S. Liu, X.H. Zheng, Z.G. Hei: J. Plast. Eng., 2012, vol. 20, pp. 60-64.

    Google Scholar 

  8. P.P. Li, Y.X. Zhong, Q.X. Ma, and C.L. Yuan: J. Tsinghua Univ. (Sci. & Tech.), 2013, vol. 3, pp. 289–94.

  9. P.P. Li, Y.X. Zhong, Q.X. Ma, C.L. Yuan, and J.P. Luo: J. Plast. Eng., 2011, vol. 18, pp.13-18.

    Google Scholar 

  10. P. Pan, Y. Zhong, Q. Ma, and C. Yuan: Chin. J. Mech. Eng., 2013, vol. 49, pp. 97-102.

    Article  Google Scholar 

  11. Z.J. Zhang, G.Z. Dai, S.N. Wu, L.X. Dong, and L.L. Liu: Mater. Sci. Eng. A, 2009, vol. 499, pp. 49-52.

    Article  Google Scholar 

  12. M.S. Chen, and Y.C. Lin: Int. J. Plasticity, 2013, vol. 49, pp. 53-70.

    Article  Google Scholar 

  13. W. Weroński, A. Gontarz, and Z. Pater: J. Mater. Process Tech., 1999, vol. 92, pp. 50-53.

    Article  Google Scholar 

  14. Y.H. Moon, C.J. Van Tyne, and W.A. Gordon: J. Mater. Process Technol., 2000, vol. 99, pp. 169-78.

    Article  Google Scholar 

  15. Y.H. Moon, C.J. Van Tyne, and W.A. Gordon: J. Mater. Process Technol., 2000, vol. 99, pp.179-84.

    Article  Google Scholar 

  16. Y.H. Moon, and C.J. Van Tyne: J. Mater. Process Technol., 2000, vol. 99, pp. 185-96.

    Article  Google Scholar 

  17. S.K. Choi, M.S. Chun, C. Van Tyne, and Y.H. Moon: J. Mater. Process Technol., 2006, vol. 172, pp. 88-95.

    Article  Google Scholar 

  18. D. Qian and Y. Pan: Comp. Mater. Sci., 2013, vol. 70, pp. 24-36.

    Article  Google Scholar 

  19. S.F.T.C., DEFORMTM 3D Version 6.1 (sp1) User’s Manual, Scientific Forming Technologies Corporation, Columbus, Ohio, 2007.

  20. C.A.M.H.E. Committee, China Aeronautical Materials Handbook (Structural Steel, Stainless Steel), China Standard Press, Bei**g, 2002, pp. 542–48.

  21. A. Parvizi, K. Abrinia and M. Salimi: J. Mater. Process Technol., 2011, vol. 20, pp. 1505-11.

    Google Scholar 

  22. C.Y. Park and D.Y. Yang: J. Mater. Process Tech., 1997, vol. 67, pp. 195-200.

    Article  Google Scholar 

  23. X.Z. Zhang, Y.S. Zhang, Y.J. Li, and J.S. Liu: Mater. Sci. Eng. A, 2013, vol. 559, pp. 301-06.

    Article  Google Scholar 

  24. W. Reick, M. Pohl, and A.F. Padilha: ISIJ Int., 1998, vol. 38, pp. 567-71.

    Article  Google Scholar 

  25. H. Miyamoto, T. Mimaki, and S. Hashimoto: Mater. Sci. Eng. A, 2001,vol. 319, pp.779-83.

    Article  Google Scholar 

  26. V.G. Gavriljuk, and H. Berns, High Nitrogen Steels (Structure Manufacture Application), Berlin: Springer verlag Berlin,1999, pp. 82-85.

    Book  Google Scholar 

  27. Y. Maehara, K. Masao, and N. Fu**o: Trans ISIJ., 1983, vol. 23, pp. 240-46.

    Article  Google Scholar 

  28. J.O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685-700.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the State Key Laboratory for Advanced Metal Materials and Collaborative Innovation Center of Steel Technology at the University of Science and Technology, Bei**g, the “863” Program of China under Project No. 2012AA03A507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang.

Additional information

Manuscript submitted September 2, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yu, X., Yang, B. et al. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe. Metall Mater Trans A 47, 5114–5124 (2016). https://doi.org/10.1007/s11661-016-3696-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3696-z

Keywords

Navigation