Log in

Mechanical Behavior of Ultrafine-Grained Ti-6Al-4V Alloy Produced by Severe Warm Rolling: The Influence of Starting Microstructure and Reduction Ratio

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To provide insight into the mechanical behavior and microstructural evolution of bulk ultrafine-grained (UFG) Ti-6Al-4V alloys, we produced Ti-6Al-4V alloy sheets with grain size smaller than 300 nm through severe warm rolling of three different starting microstructures (i.e., lamellar, equiaxed, and hybrid, that is half equiaxed plus half lamellar microstructures) with various reduction ratios (i.e., 60, 70, 80, and 90 pct) at 873 K (600 °C). Accordingly, the tensile behavior, microhardness, grain size, and dislocation density of the UFG Ti-6Al-4V alloys with different starting microstructures and reduction ratios were comparatively analyzed. Our results show that, following the continuous enhancement of tensile strength and hardness as the rolling reduction ratio increased from 0 to 70 pct, there was a saturation state in which the values of strength and hardness remained constant as the reduction ratio further increased from 70 to 90 pct for all the alloy samples with different starting microstructures. In terms of microstructural evolution, although grain size decreased and dislocation density increased continuously as the rolling reduction ratio increased from 0 to 70 pct, grain size and dislocation density did not change significantly when the reduction ratio further increased from 70 to 90 pct. Our results suggest that, whereas the starting microstructure influences the early stages of grain refinement and mechanical performance, this influence diminishes as the rolling reduction ratio is increased beyond a critical value. This behavior was rationalized on the basis of the limits of grain boundary and dislocation strengthening during severe warm rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Lütjering, J.C. Williams: Titanium, 2nd ed., Springer, Berlin, 2007.

    Google Scholar 

  2. Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SY, Semiatin SL. Scr Mater, 2004, vol. 51, pp. 1147-51.

    Article  Google Scholar 

  3. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S. Mater Sci Eng A, 2008, vol. 485, pp. 448-55.

    Article  Google Scholar 

  4. Zherebtsov S, Salishchev G, Łojkowski W. Mater Sci Eng A, 2009, vol. 515, pp. 43-8.

    Article  Google Scholar 

  5. Semenova IP, Raab GI, Golubovskiy ER, Valiev RR. J Mater Sci, 2013, vol. 48, pp. 4806-12.

    Article  Google Scholar 

  6. Kim Y, Kim E-P, Song Y-B, Lee SH, Kwon Y-S. J Alloy Compd, 2014, vol. 603, pp. 207-12.

    Article  Google Scholar 

  7. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK. Scr Mater, 2000, vol. 43, pp. 819-24.

    Article  Google Scholar 

  8. Semenova IP, Raab GI, Saitova LR, Valiev RZ. Mater Sci Eng A, 2004, vol. 387–389, pp. 805-8.

    Article  Google Scholar 

  9. Chao Q, Hodgson P, Beladi H. Metall Mater Trans A, 2014, vol. 45, pp. 2659-71.

    Article  Google Scholar 

  10. Murty SVSN, Nayan N, Kumar P, Narayanan PR, Sharma SC, George KM. Mater Sci Eng A, 2014, vol. 589, pp. 174-81.

    Article  Google Scholar 

  11. Li Z, Fu L, Fu B, Shan A. Mater Sci Eng A, 2012, vol. 558, pp. 309-18.

    Article  Google Scholar 

  12. Li Z, Fu L, Fu B, Yang X, Shan A. J Nanosci Nanotechno, 2014, vol. 14, pp. 7740-4.

    Article  Google Scholar 

  13. Dragomir IC, Li DS, Castello-Branco GA, Garmestani H, Snyder RL, Ribarik G, et al. Mater Charact, 2005, vol. 55, pp. 66-74.

    Article  Google Scholar 

  14. Ribarik G, Ungar T, Gubicza J. J Appl Crystallogr, 2001, vol. 34, pp. 669-76.

    Article  Google Scholar 

  15. Dragomir IC, Ungar T. J Appl Crystallogr, 2002, vol. 35, pp. 556-64.

    Article  Google Scholar 

  16. Z. Li, B. Zheng, Y. Wang, T. Top**, Y. Zhou, R. Valiev, et al.: J Mater Sci, 2014, vol. pp. 6656–66.

  17. Ungár T. Mater Sci Eng A, 2001, vol. 309–310, pp. 14-22.

    Article  Google Scholar 

  18. W.F. Smith, J. Hashemi: Foundations of Materials Science and Engineering, 4th ed., McGraw-Hill, New York, 2006.

    Google Scholar 

  19. Milner JL, Abu-Farha F, Bunget C, Kurfess T, Hammond VH. Mater Sci Eng A, 2013, vol. 561, pp. 109-17.

    Article  Google Scholar 

  20. M.A. Krivoglaz: X-ray and Neutron Diffraction in Nonideal Crystals, Springer, Berlin, 1996.

    Book  Google Scholar 

  21. Dederichs PH. Phys Rev B, 1971, vol. 4, pp. 1041-50.

    Article  Google Scholar 

  22. Bailey JE, Hirsch PB. Philos Mag, 1960, vol. 5, pp. 485-97.

    Article  Google Scholar 

  23. Li Z, Chen D, Wang H, Lavernia EJ, Shan A. J Mater Res, 2014, vol. 29, pp. 2514-24.

    Article  Google Scholar 

  24. Ding R, Guo ZX. Mater Sci Eng A, 2004, vol. 365, pp. 172-9.

    Article  Google Scholar 

  25. Lee YT, Peters M, Welsch G. Metall Trans A, 1991, vol. 22, pp. 709-14.

    Article  Google Scholar 

  26. Hall EO. Proc Phys Soc B, 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  27. Lin Y, Wen H, Li Y, Wen B, Liu W, Lavernia E. Metall Mater Trans B, 2014, vol. 45, pp. 795-810.

    Article  Google Scholar 

  28. Lin Y, Xu B, Feng Y, Lavernia EJ. J Alloy Compd, 2014, vol. 596, pp. 79-85.

    Article  Google Scholar 

Download references

Acknowledgments

The authors (ZL, YS and AS) would like to acknowledge support from the Shanghai Committee of Science and Technology (13DZ1942800). The financial support (ZL and EJL) from the US National Science Foundation (NSF DMR-1210437) is also gratefully appreciated. Furthermore, the author (ZL) would like to thank the financial support from the China Scholarship Council (No. 201306230030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Li or Aidang Shan.

Additional information

Manuscript submitted April 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Sun, Y., Lavernia, E.J. et al. Mechanical Behavior of Ultrafine-Grained Ti-6Al-4V Alloy Produced by Severe Warm Rolling: The Influence of Starting Microstructure and Reduction Ratio. Metall Mater Trans A 46, 5047–5057 (2015). https://doi.org/10.1007/s11661-015-3080-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3080-4

Keywords

Navigation