Log in

Fate and toxicity of nanoparticles in aquatic systems

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Nanotechnology is a ground-breaking multidisciplinary field across a broad spectrum of basic and applied sciences for producing and applying nano-sized materials for innovative solutions. The use of nanomaterials in industrial applications, medical products, and consumers has increased repeatedly over the last few years, and these applications will likely continue to grow. In an aquatic ecosystem, nanoparticles take entry through a direct route that includes industrial discharge, disposal of wastewater treatment effluents, and indirect runoff from the soil. After reaching the aquatic environment, the nanomaterials are highly affected by their backdrops and subsequently go through various conversions like agglomeration, aggregation, dissolution, sulfidation, etc. The fate and the behavior of nanomaterials in the aquatic system not only depend on their physical-chemical properties but also on the pH, temperature, salinity, water hardness, and concentration of natural organic matter present in receiving water. In this review, emphasis has been given to the toxicological properties and potential risks of nanomaterials in terms of factors contributing to their toxicology, bioavailability, and accumulation in aquatic organisms as well as the environment. Furthermore, we summarize the published data on engineered nanoparticles’ effect on aquatic organisms. The issues related to the accumulation and penetration of nanoparticles in the aquatic organism, their toxic effect, and biotransformation along with the food web are also discussed. Since nanomaterials are being increasingly released into aquatic bodies, it is important to pay greater attention to their toxicity and how it affects the aquatic ecosystem. The nanomaterials are bioavailable to plants, resulting in trophic transfer, and they impact other organisms through biomagnification, as discussed in this review. To close the enormous information gap, extensive research on the interactions and impacts of NPs on different species belonging to different trophic levels of the aquatic environment and the destiny of NPs along the food chain of the ecosystem is urgently needed.

Highlights

The use of nanomaterial is in industrial applications, medical products, and consumers has increased repeatedly.

The accidental release of NPs in the environment ultimately reaches the aquatic environment.

A high concentration of these NPs negatively affects the organism at every trophic level.

The NPs induced toxicity is mainly due to the generation of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelazim AM, Saadeldin IM, Swelum AAA, Afifi MM, Alkaladi A (2018) Oxidative stress in the muscles of the fish Nile tilapia caused by zinc oxide nanoparticles and its modulation by vitamins C and E. Oxidative medicine and cellular longevity, 2018

  • Afifi M, Saddick S, Zinada OAA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23(6):754–760

    Article  Google Scholar 

  • Aghamirkarimi S, Mashinchian Moradi A, Sharifpour I, Jamili S, Mostafavi G, P (2017) Sublethal effects of copper nanoparticles on the histology of gill, liver, and kidney of the Caspian roach. Rutilus rutilus caspicus

  • Arturo GS, Moreno-Garcia E, Carlos-Castro J, Zamudio-Abdala J, Garduno-Trejo J (2012) Cognitive, affective and behavioral components that explain attitude toward statistics. J Math Res Archives 4(5). https://doi.org/10.5539/jmr.v4n5p8

  • Arvidsson R, Molander S, Sandén BA (2011) Impacts of a silver-coated future: particle flow analysis of silver nanoparticles. J Ind Ecol 15(6):844–854

    Article  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA (2012) Particle flow analysis - Exploring potential use phase emissions of TiO2 nanoparticles from sunscreen, paint and cement. J Ind Ecol 16(3):343–351

    Article  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, **ng B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  Google Scholar 

  • Azimzada A, Jreije I, Hadioui M, Shaw P, Farner JM, Wilkinson KJ (2021) Quantification and Characterization of Ti-, Ce-, and Ag-Nanoparticles in Global Surface Waters and Precipitation. Environ Sci Tech 55(14):9836–9844. https://doi.org/10.1021/acs.est.1c00488

    Article  Google Scholar 

  • Bashri G, Parihar P, Singh R, Patel A, Prasad SM (2018) Plant and Nanoparticle Interface at the Molecular Level: An Integrated Overview. Nanomaterials in Plants, Algae, and Microorganisms, 325–344

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of Engineered Nanoparticles to Aquatic Inverte? brates: A Brief Review and Recommendations for Future Toxicity Testing, Ecotoxicology, 17, 387–395

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–8723

    Article  Google Scholar 

  • Birge W, Zuiderveen J (1995) The comparative toxicity of silver to aquatic biota. Proceedings, 3rd Argentum International Conference on the Transport, Fate, and Effects of Silver in the Environment, Washington, DC

  • Braz-Mota S, Campos DF, MacCormack TJ, Duarte RM, Val AL, Almeida-Val VM (2018) Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Sci Total Environ 630:1168–1180

    Article  Google Scholar 

  • Brigger I, Dubemet C, Courveur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  Google Scholar 

  • Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Mouneyrac C (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84(1):166–174

    Article  Google Scholar 

  • Buffet PE, Amiard-Triquet C, Dybowska A, Risso-de Faverney C, Guibbolini M, Valsami-Jones E, Mouneyrac C (2012) Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol Environ Saf 84:191–198

    Article  Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang J (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32:2887–2899

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. (2018), https://doi.org/10.1186/s12302-018-0132-6

  • Bury NR, McGeer JC, Wood CM (1999) Effects of altering freshwater chemistry on physiological responses of rainbow trout to silver exposure. Environ Toxicol Chem 18(1):49–55

    Article  Google Scholar 

  • Campbell PG, Errécalde O, Fortin C, Hiriart-Baer VP, Vigneault B (2002) Metal bioavailability to phytoplankton—applicability of the biotic ligand model. Comp Biochem Physiol C—Toxicology Pharmacol 133:189–206

    Article  Google Scholar 

  • Carmo TL, Siqueira PR, Azevedo VC, Tavares D, Pesenti EC, Cestari MM, Fernandes MN (2019) Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environ Toxicol 34(4):457–468

    Article  Google Scholar 

  • Chang Y, Zhang M, **a L, Zhang J, **ng G (2012) The toxic effects and mechanisms ofcuo and zno nanoparticles. Materials 2012(5), 2850–2871; doi:https://doi.org/10.3390/ma5122850

  • Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  Google Scholar 

  • Chupani L, Niksirat H, Velíšek J, Stará A, Hradilová Å, Kolařík J, Zusková E (2018) Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol Environ Saf 147:110–116

    Article  Google Scholar 

  • Cozzari M, Elia AC, Pacini N, Smith BD, Boyle D, Rainbow PS, Khan FR (2015) Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nanoand bulk-sized silver. Environ Pollut 198:32–40

    Article  Google Scholar 

  • Dai L, Banta GT, Selck H, Forbes VE (2015) Influence of copper oxide nanoparticle form and shape on toxicity and bioaccumulation in thedeposit feeder, Capitella teleta. Mar Environ Res 111:99–106

    Article  Google Scholar 

  • De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246:116–127

    Article  Google Scholar 

  • Dong S, Qu M, Rui Q, Wang D (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    Article  Google Scholar 

  • Elgrabli D, Abella-Gallart S, Aguerre-Chariol O (2007) Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies. Nanotoxicology 41:266–278

  • Elimelech M, Gregor J, Jia X, Williams RI (1995) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth- Heinemann, Woburn

    Google Scholar 

  • Farkas J et al (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1):117–125

    Article  Google Scholar 

  • Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1–2):44–51

    Article  Google Scholar 

  • Fasham MJ (1984) R. flows of energy and materials in marine ecosystems: Theory and practice. Berlin:Springer

  • Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619:328–337

    Article  Google Scholar 

  • Gallego Urrea JA, Tuoriniemi J, Pallander T, Hassellöv M (2010) Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis. Environ Chem 7(1):67–81

    Article  Google Scholar 

  • Galloway T et al (2010) Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 158(5):1748–1755

    Article  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed research international 2014

  • Gong N, Shao KS, Feng W, Lin ZZ, Liang CH, Sun YQ (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510

    Article  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiOZnO Ag CNT fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomate- rials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978

    Article  Google Scholar 

  • Guan X, Shi W, Zha S, Rong J, Su W, Liu G (2018) Neurotoxic impact of acute TiO2 nanoparticle exposure on a benthic marine bivalve mollusk, Tegillarca granosa. Aquat Toxicol 200:241–246

    Article  Google Scholar 

  • Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9:125–144

    Article  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nano-sized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamno- cephalus platyurus. Chemosphere 71(7):1308–1316

    Article  Google Scholar 

  • Hiriart-Baer VP, Fortin C, Lee DY, Campbell PG (2006) Toxicityof silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: influence of thiosulphate. Aquat Toxicol 78(2):136–148

    Article  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  Google Scholar 

  • Howard CV (2004) Small particles-big problems. Int Lab News 34:28–29

    Google Scholar 

  • Huang J, Cao C, Liu J, Yan C, **ao J (2019) The response of nitrogen removal and related bacteria within constructed wetlands after long-term treating wastewater containing environmental concentrations of silver nanoparticles. Sci Total Environ 667:522–531

    Article  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on Algae and Daphnids (8 pp)Environmental Science and Pollution Research, 13:225–232

  • Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD (2014) Opportunities and challenges of nano technology in the green economy. Environ Health 13:78

    Article  Google Scholar 

  • Janes N, Playle RC (1995) Modeling silver-binding to gills of rainbow trout (Onchorrynchus mykiss). Environ Toxicol Chem 14:1847–1858

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  Google Scholar 

  • Johnson AC et al (2011) An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in U.K. field scenarios. Sci Total Environ 409(13):2503–2510

    Article  Google Scholar 

  • Jovanović B, Bezirci G, Çağan AS, Coppens J, Levi EE, Oluz Z, Beklioğlu M (2016) Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment. Nanotoxicology 10(7):902–912

    Article  Google Scholar 

  • Jurašin DD, Ćurlin M, Capjak I, Crnković T, Lovrić M, Babič M, Horák D, Vrček IV, Gajović S (2016) Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein J Nanotechnol 7(1):246–262

    Article  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45(9):3902–3908

    Article  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nano eco-toxicology. Toxicology 269(2–3):105–119

    Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  Google Scholar 

  • Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182(11):1398–1409

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: Behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  • Kurwadkar S, Pugh K, Gupta A, Ingole S (2015) Nanoparticles in the environment: Occurrence, distribution, and risks. J Hazard Toxic Radioactive Waste 19(3):04014039

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst V, Muller L, R.N (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characteri-zations, and biological applications. Chem Rev 110:2574–2574

    Article  Google Scholar 

  • Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H, Kock H, Tentschert J, Tlili A, Schaffer A, Sips AJAM, Yokel RA, Luch A (2018) Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environ Sci Nano 5:48–63

    Article  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environ Toxicol Chem 37:2029–2063

    Article  Google Scholar 

  • Li L, Hu L, Zhou Q, Huang C, Wang Y, Sun C, Jiang G (2015) Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in medaka (Oryzias latipes) embryos. Environ Sci Technol 49(4):2486–2495

    Article  Google Scholar 

  • Lin D, **ng B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth Environ Pollut. 150:243–250

  • Londono N, Donovan AR, Shi H, Geisler M, Liang Y (2017) Impact of TiO2 and ZnO nanoparticles on an aquatic microbial community: effect at environmentally relevant concentrations. Nanotoxicology 11(9–10):1140–1156

    Article  Google Scholar 

  • Londono N, Donovan AR, Shi H, Geisler M, Liang Y (2019) Effects of environmentally relevant concentrations of mixtures of TiO2, ZnO and Ag ENPs on a river bacterial community. Chemosphere 230:567–577

    Article  Google Scholar 

  • Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (c60) nanoparticles. Env Toxicol Chem vol 25(4):1132–1137

    Article  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    Article  Google Scholar 

  • Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7(4–5):389–407

    Article  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  Google Scholar 

  • Maurer-Jones M, Gunsolus I, Murphy C, Haynes C (2013) Toxicity of Engineered Nanoparticles in the Environment. Anal Chem 85(6). DOI: https://doi.org/10.1021/ac303636s

  • Maynard AD (2006) Nanotechnology: A research strategy for addressing risk. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Miao L, Wang P, Hou J, Yao Y, Liu Z, Liu S (2019) Low concentrations of copper oxide nanoparticles alter microbial community structure and function of sediment biofilms. Sci Total Environ 653:705–713

    Article  Google Scholar 

  • Moore MN (1990) Lysosomal cytochemistry in marine environmental monitoring. Histochem J 22:187–191

    Article  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967–976

    Article  Google Scholar 

  • Mouchet F, Landois P, Flahaut E et al (2007) Assessment of the potential in vivo ecotoxicity of double-walled carbon nanotubes (DWNTs) in water, using the amphibian ambystoma mexicanum, Nanotoxicology, 1(2):149–156

  • Mouchet F, Landois P, Sarremejeana E et al (2008) Characterizations and in vivo ecotoxicity evaluation of double? wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87(2):127–137

    Article  Google Scholar 

  • Movafeghi A, Khataee AR, Moradi Z, Vafaei F (2016) Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: An artificial neural networks modeling. Int J Phytorem Volume 18(4). https://doi.org/10.1080/15226514.2015.1109588

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  Google Scholar 

  • Murali M, Suganthi P, Athif P, Bukhari AS, Mohamed HS, Basu H, Singhal RK (2017) Histological alterations in the hepatic tissues of Al2O3 nanoparticles exposed freshwater fish Oreochromis mossambicus. J Trace Elem Med Biol 44:125–131

    Article  Google Scholar 

  • Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ 165(1–3):155–164

    Article  Google Scholar 

  • Na K, Lee TB, Park KH, Shin EK, Lee YB, Choi HK (2003) Self-assembled nanoparticles of hydrophobically modified polysaccharide bearing vitamin H as a targeted anti- cancer drug delivery system. Eur J Pharmacol Sci 18:165–173

    Article  Google Scholar 

  • Nair S, Sasidharan A, Rani VVD, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci-Mater Med 20:235–241

    Article  Google Scholar 

  • Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganismsda review. In: Kim YJ, Platt U, Gu MB et al (eds) Atmospheric and biological environmental monitoring. Springer, New York, pp 193–206

    Chapter  Google Scholar 

  • Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311(1–3):205–219

    Article  Google Scholar 

  • Nohl H, Gille L (2005) Lysosomal ROS formation. Redox Rep 10:199–205

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  Google Scholar 

  • O’Brien N, Cummins E (2010) Nano-scale pollutants: Fate in Irish surface and drinking water regulatory systems. Hum Ecol Risk Assess 16(4):847–872

    Article  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (fullerenes, c60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  Google Scholar 

  • Oberdorster E, Zhu S, Blickley TM et al (2006) Ecotoxicology of carbon based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120

    Article  Google Scholar 

  • Oukarroum A, Samadani M, Dewez D (2014) Influence of pH on the toxicity of silver nanoparticles in the green alga Chlamydomonas acidophila. Water, Air, & Soil Pollution 225

  • Pang C, Selck H, Banta GT, Misra SK, Berhanu D, Dybowska A, Valsami-Jones E, Forbes VE (2013) Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum. Environ Toxicol Chem 32:1561–1573

    Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegratable nanoparticles for drug and gene delivery to cell and tissues. Adv Drug Deliv Rev 55:329–347

    Article  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions. Environ Sci Technol 44(17):6532–6549

    Article  Google Scholar 

  • Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV (2010) Estimating attachment of nano- and submicrometer‐particles coated with organic macromolecules in porous media: Development of an empirical model. Environ. Sci. Technol. 44(12):4531‐4538

  • Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A (2011) Low doses of pristine and oxidized singlewall carbon nanotubes affect mammalian embryonic development. ACS Nano 5:4624–4633

    Article  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109:E2451–E2456

    Article  Google Scholar 

  • Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  Google Scholar 

  • Ramskov T, Croteau MN, Forbes VE, Selck H (2015) Biokinetics of differentshaped copper oxide nanoparticles in the freshwater gastropod, Potamopyrgus antipodarum. Aquat Toxicol 163:71–80

    Article  Google Scholar 

  • Renzi M, Guerranti C (2015) Ecotoxicity of nanoparticles in aquatic environments: A review based on multivariate statistics of meta-data. J Environ Anal Chem 2:149

    Google Scholar 

  • Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Research/Fundamental Mol Mech Mutagen 592:119–137

    Article  Google Scholar 

  • Roberts AP, Mount AS, Seda B et al (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41(8):3025–3029

    Article  Google Scholar 

  • Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: Opportunities and uncertainties. Report by the RS & RAE, London. http://www.nanotec.org.uk/finalReport.htm

    Google Scholar 

  • Ruppert EE, Barnes RD, Fox RS (2004) Invertebrate zoology: a functional evolutionaryapproach

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Nanotoxicology 6:353–360

    Article  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  Google Scholar 

  • Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ (2016) Nanomaterials in the aquatic environment: An EU-USA perspective on the status of ecotoxicity testing, research priorities and challenges ahead. Environ Toxicol Chem 35(5):1055–1067

    Article  Google Scholar 

  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) Nano Genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  Google Scholar 

  • Smedsrud T, Dannevig BH, Tolleshaug BH, Berg H (1984) Endocytosis of a mannose-terminated glycoprotein and formaladehyde-treated human serum albumin in liver and kidney cells from fish (L.). Dev Comp Immunol 8(3):579–588

    Article  Google Scholar 

  • Song L, Vijver MG, Peijnenburg WJ, Galloway TS, Tyler CR (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189

    Article  Google Scholar 

  • Stephens-Altus JS, West JL (2008) Nanotechnology for tissue engineering. In Advances In Tissue Engineering (pp. 333–347)

  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  Google Scholar 

  • Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR (2016) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 10:32–41

    Google Scholar 

  • Templeton RC, Ferguson PL, Washburn KM et al (2006) Life?Cycle Effects of Single?Walled Carbon Nanotubes (SWNTs) on an Estuarine Meiobenthic Copepod. Environ Sci Technol 40(23):7387–7393

    Article  Google Scholar 

  • Toduka Y, Toyooka T, Ibuki Y (2012) Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species—Mediated fluorescence—Correlation with genotoxicity. Environ Sci Technol 46:7629–7636

    Article  Google Scholar 

  • Trombetta T, Vidussi F, Roques C, Scotti M, Mostajir B (2020) Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front Microbiol. https://doi.org/10.3389/fmicb.2020.502336

    Article  Google Scholar 

  • Turan B, Erkan N, Onkal HS, Engin G, Bilgili MS (2019) Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity-A review, Process Safety and Environmental Protection.doi: https://doi.org/10.1016/j.psep.2019.08.014

  • Pereira SP, Jesus F, Aguiar S, de Oliveira R, Fernandes M, Ranville J, Nogueira AJ (2018) Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. Sci Total Environ 618:1389–99.

  • Wang T, Long X, Cheng Y, Liu Z, Yan S (2014) The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat Toxicol 152:96–104

    Article  Google Scholar 

  • Wang H, Wick RL, **ng B (2009) Toxicity of nanoparticulate and bulk ZnO, Al. and TiO2 to the nematode Caenorhabditis elegans Environ Pollut 157(4):1171–1177

    Google Scholar 

  • Wang M, Chen L, Chen S, Ma Y (2012) Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf 79:48–54

    Article  Google Scholar 

  • Wang YG, Li YS, Pennell KD (2008) Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ Toxicol Chem 27:1860–1867

    Article  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68(3):137–142

    Article  Google Scholar 

  • Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. Trends Anal Chem 30:72–83

    Article  Google Scholar 

  • Wood CM, Hogstrand C, Galvez F, Munger RS (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat Toxicol 35(2):93–109

    Article  Google Scholar 

  • Wright MV, Matson CW, Baker LF, Castellon BT, Watkins PS, King RS (2018) Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms. Sci Total Environ 626:357–365

    Article  Google Scholar 

  • **a T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  Google Scholar 

  • **ong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  Google Scholar 

  • Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2—versus 1O2. J Am Chem Soc 125:12803–12809

    Article  Google Scholar 

  • Yang H, Liu C, Yang DF, Zhang HS, ** Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  Google Scholar 

  • Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 15:39–48

    Article  Google Scholar 

  • Zhang C, Liang Z, Hu Z (2014) Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res 50:350–358

    Article  Google Scholar 

  • Zhang X, Zhou Y, Ma Y, Zhang H, Li Y, Yang J, Pang Q (2018) Short-term effects of CuO, ZnO, and TiO2 nanoparticles on anammox. Environ Engin Sci 35(12):1294–1301

    Article  Google Scholar 

  • Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427

    Article  Google Scholar 

  • Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J P Hear 292:2023–2031

    Google Scholar 

  • Zhu X, Zhu L, Lang Y, Chen Y (2008) Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem 27:1979–1985

    Article  Google Scholar 

Download references

Funding

Any funding agency did not fund this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheo Mohan Prasad or Gausiya Bashri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Prasad, S.M. & Bashri, G. Fate and toxicity of nanoparticles in aquatic systems. Acta Geochim 42, 63–76 (2023). https://doi.org/10.1007/s11631-022-00572-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-022-00572-9

Navigation