Log in

Plant cryopreservation: a continuing requirement for food and ecosystem security

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

This issue of In Vitro Cellular and Developmental Biology—Plant is dedicated to current developments in liquid-nitrogen cryopreservation methods and their use in plant biology and germplasm preservation. The development of cryopreservation for storage of plant cells, tissues, and organs began in the 1960s and continues to this day. Long-term storage of in vitro cultures of secondary metabolite cell cultures, embryogenic cultures, clonal germplasm, endangered species, and transgenic products remains an important requirement for many scientists, organizations, and companies. The continued development of cryopreservation techniques and their application to new plants is the subject of this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson EE (1990) Free radical damage in stored plant germplasm. International Board for Plant Genetic Resources, Rome, p 128

    Google Scholar 

  • Brison M, de Boucaud M-T, Pierronnet A, Dosba F (1997) Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci 123:189–196

    Article  CAS  Google Scholar 

  • Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation. CryoLetters 20:371–376

    Google Scholar 

  • Chang Y, Reed BM (2001) Preculture conditions influence cold hardiness and regrowth of Pyrus cordata shoot tips after cryopreservation. Hortscience 36:1329–1333

    CAS  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

  • Engelmann F, Dussert S (2013) Cryopreservation. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer Science & Business Media, New York, pp 107–119

    Chapter  Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot-tips. CryoLetters 11:413–426

    Google Scholar 

  • Harvengt L, Meier-Dinkel A, Dumas E, Collin E (2004) Establishment of a cryopreserved gene bank of European elms. Can J For Res 34:43–55

    Article  Google Scholar 

  • Jenderek MM, Ambruzs B, Tanner J, Holman G, Ledbetter C, Postman J, Ellis D, Leslie C (2014) Extending the dormant bud cryopreservation method to new tree species. Acta Hortic 1039:133–136

    Article  Google Scholar 

  • Kartha K, Leung N, Mroginski L (1982) In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Z Pflanzenphysiol 107:133–140

    Article  Google Scholar 

  • Kim H-H, Lee Y-G, Shin D-J, Ko H-C, Gwag J-G, Cho E-G, Engelmann F (2009) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30:320–334

    CAS  PubMed  Google Scholar 

  • Levitt J (1980) Theories of freezing injury and resistance. In: Levitt J (ed) Chilling, freezing and high temperature stresses, Second edn. Academic Press, London, pp 228–247

    Chapter  Google Scholar 

  • Matsumoto T, Mochida K, Itamura H, Sakai A (2001) Cryopreservation of persimmon (Diospyros kaki Thunb.) by vitrification of dormant shoot tips. Plant Cell Rep 20:398–402

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Cult 28:261–266

  • Niino T, Tashiro K, Suzuki M, Ohuchi S, Magoshi J, Akihama T (1997) Cryopreservation of in vitro grown shoot tips of cherry and sweet cherry by one-step vitrification. Sci Hortic 70:155–163

    Article  Google Scholar 

  • Normah M, Makeen A (2008) Cryopreservation of excised embryos and embryonic axes. In: Plant cryopreservation: a practical guide. Springer New York, New York, pp 211–240

    Chapter  Google Scholar 

  • Normah M, Chin HF, Reed BM (eds) (2012) Conservation of tropical plant species. Springer Science & Business Media, New York

    Google Scholar 

  • Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Rep 19:733–737

    Article  CAS  Google Scholar 

  • Pritchard HW, Nadarajan J (2008) Cryopreservation of orthodox (desiccation tolerant) seeds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer New York, New York, pp 485–501

    Chapter  Google Scholar 

  • Quatrano RS (1968) Freeze-preservation of cultured flax cells utilizing dimethyl sulfoxide. Plant Physiol 43:2057–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. CryoLetters 22:97–104

    CAS  PubMed  Google Scholar 

  • Reed BM (2008a) Cryopreservation—practical considerations. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer New York, New York, NY, pp 3–13

    Chapter  Google Scholar 

  • Reed BM (ed) (2008b) Plant cryopreservation: a practical guide. Springer New York, New York

    Google Scholar 

  • Reed BM (2011) Choosing and applying cryopreservation protocols to new plant species or tissues. Acta Hortic 908:363–372

    Article  Google Scholar 

  • Reed B, Chang Y (1997) Medium- and long-term storage of in vitro cultures of temperate fruit and nut crops. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro. Science Publishers, Inc, Enfield, pp 67–105

    Google Scholar 

  • Reed B, Hummer K (1995) Conservation of germplasm of strawberry (Fragaria species). In: Bajaj Y (ed) Cryopreservation of plant germplasm I. Springer-Verlag, Berlin Heidelberg, pp 354–370

    Chapter  Google Scholar 

  • Sakai A (1965) Survival of plant tissue at super-low temperature III. Relation between effective prefreezing temperatures and the degree of frost hardiness. Plant Physiol 40:882–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai A (1995) Cryopreservation of germplasm of woody plants. In: Bajaj Y (ed) Cryopreservation of plant germplasm I. Springer-Verlag, Berlin Heidelberg, pp 53–69

    Chapter  Google Scholar 

  • Sakai A, Yamakawa M, Sakata D, Harada T, Yakuwa T (1978) Development of a whole plant from an excised strawberry runner apex frozen to-196 C. Low Temp Sci Ser B Biol Sci 36:31–38

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to −196 °C. J Plant Physiol 137:465–470

    Article  Google Scholar 

  • Sakai A, Hirai D, Niino T (2008) Development of VS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer New York, New York, pp 33–58

    Chapter  Google Scholar 

  • Staats E, Towill L, Laufmann J, Reed B, Ellis D (2006) Genebanking of vegetatively propagated crops—cryopreservation of forty-four Mentha accessions. In Vitro Cell Dev Biol Plant 42:45A

  • Setponkus PL (1985) Fundamental aspects of cryoinjury as related to cryopreservation of plant cells and organs. In: Zaitlin M, Day P, Hollander A (eds) Biotechnology in plant science. Academic Press, New York, pp 145–159

  • Towill L (1983) Improved survival after cryogenic exposure of shoot tips derived from in vitro plantlet cultures of potato. Cryobiology 20:567–573

    Article  CAS  PubMed  Google Scholar 

  • Towill L, Ellis D (2008) Cryopreservation of dormant buds. In: Reed BM (ed) Plant cryopreservation—a practical guide. Springer, New York, pp 421–442

    Chapter  Google Scholar 

  • Uchendu E, Keller EJ (2016) Melatonin-loaded alginate beads improve cryopreservation of yam Dioscorea alata and D. cayenensis. CryoLetters 37:77–87

    CAS  PubMed  Google Scholar 

  • Uchendu EE, Leonard SW, Traber MG, Reed BM (2009) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35

    Article  PubMed  Google Scholar 

  • Uchendu EE, Muminova M, Gupta S, Reed BM (2010) Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell Dev Biol Plant 46:386–393

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.) J Pineal Res 55:435–442

    CAS  PubMed  Google Scholar 

  • Volk GM, Walters C (2010) Preservation of genetic resources in the national plant germplasm clonal collections. In: Plant Breeding Reviews. John Wiley & Sons, Inc., Oxford, pp 291–344

    Chapter  Google Scholar 

  • Walters C, Wesley-Smith J, Crane J, Hill LM, Chmielarz P, Pammenter NW, Berjak P (2008) Cryopreservation of recalcitrant (i.e. desiccation-sensitive) seeds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 465–484

    Chapter  Google Scholar 

  • Wang Q, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327

    Article  CAS  Google Scholar 

  • Waterworth H, Hadidi A (1998) Economic losses due to plant viruses. In: Hadidi A, Khetarpal R, Koganezawa H (eds) Plant virus disease control. American Phyto-pathological Society Press, St. Paul, pp 1–13

    Google Scholar 

  • Wesley-Smith J, Walters C, Pammenter NW, Berjak P (2001) Interactions among water content, rapid (nonequilibrium) cooling to −196°C, and survival of embryonic axes of Aesculus hippocastanum L. seeds. Cryobiology 42:196–206

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Fuller M (1999) Ice nucleation and deep supercooling in plants: new insights using infrared thermography. In: Maregesin R, Schinner F (eds) Cold-adapted organisms. Springer-Verlag, Heidelberg, pp 105–118

    Chapter  Google Scholar 

  • Withers LA, King P (1980) A simple freezing unit and routine cryopreservation method for plant-cell cultures. CryoLetters 1:213–220

    Google Scholar 

  • Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 32:256–265

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Rafique T, Fukui K, Sekizawa K, Niino T (2012) V-cryo-plate procedure as an effective protocol for cryobanks: case study of mint cryopreservation. CryoLetters 33:12–23

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara M. Reed.

Additional information

Editor: David Duncan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, B.M. Plant cryopreservation: a continuing requirement for food and ecosystem security. In Vitro Cell.Dev.Biol.-Plant 53, 285–288 (2017). https://doi.org/10.1007/s11627-017-9851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9851-4

Keywords

Navigation