Log in

Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Bone marrow transplants (BMTs) are mainly limited by a low number of CD34+ cells. The transforming growth factor-beta (TGF-β) pathway downregulation is a key factor that increases cell self-renewal. In nature, hematopoietic stem cells (HSCs) are in a microenvironment, surrounded by cells in a three-dimensional (3D) configuration. The aim of this study is to investigate the association between a 3D culture and the delivery ratio of downregulation. Demineralized bone matrix (DBM) and mineralized bone allograft (MBA) scaffolds were coated using unrestricted somatic stem cells (USSCs) as the feeder layer. Umbilical cord blood (UCB)-CD34+ cells were then ex vivo expanded in them and transfected by small interfering RNA (siRNA) against TGFbR2, a type 2 receptor in the TGF-β pathway. Finally, quantitative real-time PCR, flow cytometry, and clonogenic assay were performed. In a global comparison, we observed that the highest expansion ratio, lowest expression level, and the highest CD34 marker belonged to the simple 2D culture transfected group. This suggests that TGFbR2 downregulation in a 2D culture can be done more effectively. The siRNA delivery system and the transfection ratio in an ex vivo environment, which mimicks in vivo conditions, have low efficiency. Genetic modification of the cells needs free 3D spaces to enable better transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Alimoghaddam K, Ghavamzadeh A, Jahani M, Jalali A, Jorjani H, Iravani M et al (2011) Hematopoietic stem cell transplantation in acute promyelocytic leukemia, experience in Iran. Arch Iran Med 14(5):332

    PubMed  Google Scholar 

  • Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Khoshzaban A, Keshel S et al (2009) Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(2):e1

    Article  PubMed  Google Scholar 

  • Ben David D, Kizhner T, Livne E, Srouji S (2010) A tissue like construct of human bone marrow MSCs composite scaffold support in vivo ectopic bone formation. J Tissue Eng Regen Med 4(1):30–37

    CAS  PubMed  Google Scholar 

  • Bordignon C (2006) Stem-cell therapies for blood diseases. Nature 441(7097):1100–1102

    Article  CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M et al (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci 89(9):4109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5(12):685–697

    Article  PubMed  Google Scholar 

  • Cain SA, McGovern A, Small E, Ward LJ, Baldock C, Shuttleworth A et al (2009) Defining Elastic Fiber Interactions by Molecular Fishing. Mol Cell Proteomics 8(12):2715–2732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 59(4–5):249–262

    Article  CAS  PubMed  Google Scholar 

  • Conrad PD, Emerson SG (1998) Ex vivo expansion of hematopoietic cells from umbilical cord blood for clinical transplantation. J Leukoc Biol 64(2):147–155

    CAS  PubMed  Google Scholar 

  • Coutu DL, Yousefi AM, Galipeau J (2009) Three dimensional porous scaffolds at the crossroads of tissue engineering and cell based gene therapy. J Cell Biochem 108(3):537–546

    Article  CAS  PubMed  Google Scholar 

  • De Bruyn C, Delforge A, Bron D, Ley P, De Hemptinne D, Stryckmans P (1994) Modulation of human cord blood progenitor cell growth by recombinant human interleukin 3 (IL 3), IL 6, granulocyte macrophage colony stimulating factor (GM CSF) and stem cell factor (SCF) in serum supplemented and serum free medium. Stem Cells 12(6):616–625

    Article  PubMed  Google Scholar 

  • Delalat B, Pourfathollah AA, Soleimani M, Mozdarani H, Ghaemi SR, Movassaghpour AA et al (2009) Isolation and ex vivo expansion of human umbilical cord blood-derived CD34+ stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology 14(3):125–132

    Article  PubMed  Google Scholar 

  • Dutta RC, Dutta AK (2010) Comprehension of ECM-Cell dynamics: a prerequisite for tissue regeneration. Biotechnol Adv 28(6):764–769

    Article  CAS  PubMed  Google Scholar 

  • Emerson SG (1996) Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells: the next generation of cellular therapeutics. Blood 87(8):3082

    CAS  PubMed  Google Scholar 

  • Fatemehsadat Toghraie D, ChenariBSc N, GhaderiPhD A (2012) Scaffold-free Adipose-derived Stem Cells (ASCs) Improve Experi-mentally Induced Osteoarthritis in Rabbits. Arch Iran Med 15(8):495

    PubMed  Google Scholar 

  • Feng Q, Chai C, Jiang XS, Leong KW, Mao HQ (2006) Expansion of engrafting human hematopoietic stem/progenitor cells in three dimensional scaffolds with surface immobilized fibronectin. J Biomed Mater Res A 78(4):781–791

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao L, Chen X, Zhang X, Liu Y, Kong P, Peng X et al (2006) Human umbilical cord blood-derived stromal cell, a new resource of feeder layer to expand human umbilical cord blood CD34+ cells in vitro. Blood Cells Mol Dis 36(2):322–328

    Article  CAS  PubMed  Google Scholar 

  • Giardino R, Nicoli Aldini N, Fini M, Tanzi M, Fare S, Draghi L et al (2006) Bioabsorbable scaffold for in situ bone regeneration. Biomedecine Pharmacother 60(8):386–392

    Article  CAS  Google Scholar 

  • Hai Jiang W, **n Na D, Hui JD (2008) Expansion of hematopoietic stem/progenitor cells. Am J Hematol 83(12):922–926

    Article  PubMed  Google Scholar 

  • Hashemi ZS, Forouzandeh Moghadam M, Soleimani M (2013) Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer. Iranian J Basic Med Sci 16(10):1075–1087

    Google Scholar 

  • Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2(2):e190

    Article  PubMed Central  PubMed  Google Scholar 

  • Itoh S, ten Dijke P (2007) Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 19(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Kasten P, Luginbühl R, Van Griensven M, Barkhausen T, Krettek C, Bohner M et al (2003) Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite,[beta]-tricalcium phosphate and demineralized bone matrix* 1. Biomaterials 24(15):2593–2603

    Article  CAS  PubMed  Google Scholar 

  • Keil M, Siegert A, Eckert K, Gerlach J, Haider W, Fichtner I (2012) Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo. In Vitro Cell Dev Biol-Anim 48(3):165–174

    Article  CAS  PubMed  Google Scholar 

  • Keller JR, Jacobsen SEW, Dubois CM, Hestdal K, Ruscetti FW (1992) Transforming growth factor β: a bidirectional regulator of hematopoietic cell growth. Int J Cell Cloning 10(1):2–11

    Article  CAS  PubMed  Google Scholar 

  • Khan ZA, Chan BM, Uniyal S, Barbin YP, Farhangkhoee H, Chen S et al (2005) EDB fibronectin and angiogenesis—a novel mechanistic pathway. Angiogenesis 8(3):183–196

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Zhao Y, Sun W, Chen B, Zhang J, Zhao W et al (2008) The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 29(9):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Cao Y (2007) Application of scaffold materials in tissue reconstruction in immunocompetent mammals: our experience and future requirements. Biomaterials 28(34):5078–5086

    Article  CAS  PubMed  Google Scholar 

  • Mankani MH, Kuznetsov SA, Robey PG (2007) Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density. Exp Hematol 35(6):995–1004

    Article  CAS  PubMed  Google Scholar 

  • Mauney JR, Jaquiéry C, Volloch V, Heberer M, Martin I, Kaplan DL (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26(16):3173–3185

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio G, Migliaccio AR, Druzin ML, Giardina PJV, Zsebo KM, Adamson JW (1991) Effects of recombinant human stem cell factor (SCF) on the growth of human progenitor cells in vitro. J Cell Physiol 148(3):503–509

    Article  CAS  PubMed  Google Scholar 

  • Moioli EK, Clark PA, **n X, Lal S, Mao JJ (2007) Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59(4–5):308–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montjovent MO, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C et al (2008) Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 42(3):554–564

    Article  CAS  PubMed  Google Scholar 

  • Ohmizono Y, Sakabe H, Kimura T, Tanimukai S, Matsumura T, Miyazaki H et al (1997) Thrombopoietin augments ex vivo expansion of human cord blood-derived hematopoietic progenitors in combination with stem cell factor and flt3 ligand. Leuk: off J Leuk Soc Am Leuk Res Fund UK 11(4):524

    Article  CAS  Google Scholar 

  • Ploemacher RE, Van Soest PL, Boudewijn A (1993) Autocrine transforming growth factor β1 blocks colony formation and progenitor cell generation by hemopoietic stem cells stimulated with steel factor. Stem Cells 11(4):336–347

    Article  CAS  PubMed  Google Scholar 

  • Pournasr B, Mohamadnejad M, Bagheri M, Aghdami N, Shahsavani M, Malekzadeh R et al (2011) In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Arch Iran Med 14(4):244–249

    CAS  PubMed  Google Scholar 

  • Rouhi L, Kajbafzadeh AM, Modaresi M, Shariati M, Hamrahi D (2013) Autologous serum enhances cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells in the presence of transforming growth factor-β1 (TGF-β1). In Vitro Cell Dev Biol-Anim 49(4):287–294

    Article  CAS  PubMed  Google Scholar 

  • Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39

    CAS  PubMed  Google Scholar 

  • Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Cartmell S, Haj AJ. Bone tissue engineering. Applications of Cell Immobilisation Biotechnology. 2005:153–66

  • Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 18(6):1360

    CAS  PubMed  Google Scholar 

  • Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233

    PubMed  Google Scholar 

  • Soleimani M, Mozdarani H, Pourfathollah A, Mortazavi Y, Alimoghaddam K, Nikogoftar M et al (2005) A co-culture system for expansion nonenriched cord blood Stem/Progenitor cells. Biotechnol 4(4):310–315

    Article  CAS  Google Scholar 

  • Sundar S, Pendegrass C, Oddy M, Blunn G (2009) Tendon re-attachment to metal prostheses in an in vivo animal model using demineralised bone matrix. J Bone Joint Surg-Br Vol 91(9):1257

    Article  CAS  Google Scholar 

  • Terskikh VV, Vasil'ev AV, Voroteliak EA. [Stem cell niches]. Izv Akad Nauk Ser Biol. [Review Russian]. 2007(3):261–72

  • To L, Haylock D, Simmons P, Juttner C (1997) The biology and clinical uses of blood stem cells. Blood 89(7):2233

    CAS  PubMed  Google Scholar 

  • Zauli G, Vitale M, Visani G, Marchisio M, Milani D, Capitani S (1994) In vitro growth of human fetal CD34+ cells in the presence of various combinations of recombinant cytokines under serum free culture conditions. Br J Haematol 86(3):461–467

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Suggs LJ (2007) Matrices and scaffolds for drug delivery in vascular tissue engineering. Adv Drug Deliv Rev 59(4–5):360–373

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gelain F, Zhao X, editors. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Seminars in cancer biology; 2005: Elsevier

  • Zhao Y, Lin H, Zhang J, Chen B, Sun W, Wang X et al (2008) Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation. Tissue Eng Part A 15(1):13–21

    Article  CAS  Google Scholar 

  • Zohreh Hamidi M, Leila Nedaeifard M, Ramin Heshmat M, Kamran Alimoghaddam M, Bagher Larijani M, Ardeshir Ghavamzadeh M et al (2013) Changes of bone density in pediatric patients with β-thalassemia major after allogenic hematopoietic stem cell transplantation. Arch Iran Med 16(2):88

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tavakoli in the Iranian Tissue Bank for expert technical assistance. This study was performed at the University of Tarbiat Modares and supported by the Biotechnology Development Council (BDC). The authors are thankful to the BDC for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Forouzandeh Moghadam.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, Z.S., Moghadam, M.F. & Soleimani, M. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells. In Vitro Cell.Dev.Biol.-Animal 51, 495–506 (2015). https://doi.org/10.1007/s11626-014-9854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9854-y

Keywords

Navigation