Log in

Hippocampal sclerosis without visually detectable hippocampal MRI abnormalities: automated subfield volumetric analysis

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to investigate hippocampal subfield volumes in patients with hippocampal sclerosis (HS) without visually detectable MRI abnormalities and to determine the diagnostic accuracy using hippocampal subfield volumes.

Materials and methods

We examined 46 patients with unilateral HS who had a histopathological diagnosis, and 54 controls. The patients were divided into two groups; visually detectable HS (n = 26) and undetectable HS (n = 20) on MRI. The volumes of hippocampal subfield using FreeSurfer were compared among the three groups. Diagnostic accuracy was calculated as the AUC of ROC using cutoff values for each individual subfield.

Results

Compared with the controls, visually detectable HS showed significantly reduced volumes of all the hippocampal subfields and entire hippocampus, whereas visually undetectable HS showed significant atrophy only in the CA3 and hippocampus-amygdala-transition-area. To diagnose visually undetectable HS, the CA3 volumes had AUC of 0.719, which was higher than AUC of 0.614 based on the entire hippocampal volumes.

Conclusion

Visually undetectable HS demonstrated volume reductions in the CA3. Further, the CA3 volumes was more useful to diagnose visually undetectable HS compared with the entire hippocampal volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CA:

Cornu ammonis

GC-DG:

Granule cell layer of dentate gyrus

HS:

Hippocampal sclerosis

HSV:

Hippocampal subfield volumetry

ILEA:

International league against epilepsy

MTLE:

Mesial temporal lobe epilepsy

SD:

Standard deviation

References

  1. Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, et al. Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol. 1991;29(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  2. Bronen RA, Fulbright RK, Kim JH, Spencer SS, Spencer DD, Al-Rodhan N. Regional distribution of MR findings in hippocampal sclerosis. Am J Neuroradiol. 1995;16(6):1193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanamiya M, Korogi Y, Kakeda S, Ohnari N, Kamada K, Moriya J, et al. Partial loss of hippocampal striation in medial temporal lobe epilepsy: pilot evaluation with high-spatial-resolution T2-weighted MR imaging at 3.0 T. Radiology. 2009;251(3):873–81.

    Article  PubMed  Google Scholar 

  4. Jack CR Jr, Rydberg CH, Krecke KN, Trenerry MR, Parisi JE, Rydberg JN, et al. Mesial temporal sclerosis: diagnosis with fluid-attenuated inversion-recovery versus spin-echo MR imaging. Radiology. 1996;199(2):367–73.

    Article  PubMed  Google Scholar 

  5. Jackson G, Kuzniecky R, Cascino GD. Hippocampal sclerosis without detectable hippocampal atrophy. Neurology. 1994;44(1):42.

    Article  CAS  PubMed  Google Scholar 

  6. Mathern GW, Pretorius JK, Babb TL. Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures. J Neurosurg. 1995;82(2):211–9.

    Article  CAS  PubMed  Google Scholar 

  7. De Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, et al. A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia. 2003;44(5):677–87.

    Article  PubMed  Google Scholar 

  8. Proper E, Jansen G, Van Veelen C, Van Rijen P, Gispen W, De Graan P. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting. Acta Neuropathol. 2001;101(4):405–9.

    Article  CAS  PubMed  Google Scholar 

  9. Thom M, Zhou J, Martinian L, Sisodiya S. Quantitative post-mortem study of the hippocampus in chronic epilepsy: seizures do not inevitably cause neuronal loss. Brain. 2005;128(6):1344–57.

    Article  PubMed  Google Scholar 

  10. Meencke H, Veith G, Lund S. Bilateral hippocampal sclerosis and secondary epileptogenesis. Epilepsy Res Suppl. 1995;12:335–42.

    Google Scholar 

  11. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54(7):1315–29.

    Article  PubMed  Google Scholar 

  12. Thom M. Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40(5):520–43.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Na M, Ge H, Shi C, Shen H, Wang Y, Pu S, et al. Long-term seizure outcome for international consensus classification of hippocampal sclerosis: a survival analysis. Seizure. 2015;25:141–6.

    Article  PubMed  Google Scholar 

  14. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage. 2006;30(2):436–43.

    Article  PubMed  Google Scholar 

  15. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imag. 1998;17(1):87–97.

    Article  CAS  Google Scholar 

  16. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus. 2009;19(6):549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115:117–37.

    Article  PubMed  Google Scholar 

  18. Goubran M, Bernhardt BC, Cantor-Rivera D, Lau JC, Blinston C, Hammond RR, et al. In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp. 2016;37(3):1103–19.

    Article  PubMed  Google Scholar 

  19. Schoene-Bake JC, Keller SS, Niehusmann P, Volmering E, Elger C, Deppe M, et al. In vivo map** of hippocampal subfields in mesial temporal lobe epilepsy: relation to histopathology. Hum Brain Mapp. 2014;35(9):4718–28.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sone D, Sato N, Maikusa N, Ota M, Sumida K, Yokoyama K, et al. Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-resolution T2-weighed MR imaging. Neuroimage Clin. 2016;12:57–64.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jardim AP, Corso JT, Garcia MT, Gaça LB, Comper SM, Lancellotti CL, et al. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res. 2016;128:169–75.

    Article  PubMed  Google Scholar 

  22. Bernhardt BC, Bernasconi A, Liu M, Hong SJ, Caldairou B, Goubran M, et al. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Ann Neurol. 2016;80(1):142–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masaki, H., Watanabe, K., Kakeda, S. et al. Hippocampal sclerosis without visually detectable hippocampal MRI abnormalities: automated subfield volumetric analysis. Jpn J Radiol 38, 1020–1027 (2020). https://doi.org/10.1007/s11604-020-01019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-01019-y

Keywords

Navigation