Log in

More statistical tools for maximum possible earthquake magnitude estimation

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In this paper, we introduce additional statistical tools for estimating the maximum regional earthquake magnitude, \( m_{\max} \), as complement to those already introduced by Kijko and Singh (Acta Geophys 59(4):674–700, 2011). Four new methods are introduced and investigated, with regard to their applicability and performance. We present an example of application and a comparison that includes the methods introduced earlier by the previous authors. A condition for the existence of the Tate–Pisarenko estimate and a proof of the asymptotic equivalence of the Tate–Pisarenko and Kijko–Sellevoll estimates are presented in the two appendices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves If, Neves C (2013) Estimation of the finite right endpoint in the Gumbel domain. Stat Sin 24:1811–1835

    Google Scholar 

  • Beg MA (1982) Optimal tests and estimators for truncated exponential families. Metrica 29:103–113

    Article  Google Scholar 

  • Beirlant J, Fraga AM, Gommes I (2016) Tail fitting for truncated and non-truncated Pareto-type distributions. Extremes 19(3):429–462

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modelling of extreme values. Springer, London

    Book  Google Scholar 

  • Compson ET (2004) Asymptotic expansions (No. 55). Cambridge University Press, Cambridge, pp 36–47

    Google Scholar 

  • Cooke P (1980) Optimal linear estimation of bounds of random variables. Biometrika 67(1):257–258

    Article  Google Scholar 

  • Cosentino P, Ficara V, Luzio D (1977) Truncated exponential frequency–magnitude relationship in the earthquake statistics. Bull Seismol Am 67:1615–1623

    Google Scholar 

  • De Haan L, Ferreira A (2007) Extreme value theory: an introduction. Springer, Berlin

    Google Scholar 

  • Dixit UJ, Nasiri PN (2008) Estimation of parameters of a right truncated exponential distribution. Stat Pap 49(2):225–236

    Article  Google Scholar 

  • EERI Committee on Seismic Risk (H.C. Shah, chairman) (1984) Glossary of terms for probabilistic seismic risk and hazard analysis. Earthq Spectra 1:33–40

  • Field EH, Jackson DD, Dolan JF (1999) A mutually consistent seismic hazard source model for southern California. Bull Seismol Soc Am 89(3):559–578

    Google Scholar 

  • Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc Am 32:163–191

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity, energy, and acceleration: (second paper). Bull Seismol Soc Am 46:105–145

    Google Scholar 

  • Guttorp P (1987) On least-squares estimation of b values. Bull Seismol Am 77(6):2115–2124

    Google Scholar 

  • Hamilton RM (1967) Mean magnitude of an earthquake sequence. Bull Seismol Soc Am 57(5):1115–1116

    Google Scholar 

  • Hannon PM, Dihiya RC (1999) Estimation of parameters for the truncated exponential distribution. Commun Stat Theory Methods 28(11):2591–2612

    Article  Google Scholar 

  • Holschneider M, Zöller G, Hainzl S (2011) Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg–Richter model. Bull Seismol Soc Am 101(4):1649–1659

    Article  Google Scholar 

  • Kijko A (2012) On Bayesian procedure for maximum earthquake magnitude estimation. Res Geophys 2(7):46–51

    Google Scholar 

  • Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis part I: estimation of maximum regional magnitude m max. Pure Appl Geophys 152(3):413–442

    Article  Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):674–700

    Article  Google Scholar 

  • Lasocki S, Urban P (2011) Bias, variance and computational properties of Kijko’s estimators of the upper limit of magnitude distribution, M max. Acta Geophys 59(4):659–673

    Article  Google Scholar 

  • Page R (1968) Aftershocks and micro aftershocks of the great Alaska earthquake of 1964. Bull Seismol Soc Am 58(3):1131–1168

    Google Scholar 

  • Pisarenko VF (1991) Statistical evaluation of maximum possible magnitude. Izvestiya Earth Phys 27:757–763

    Google Scholar 

  • Pisarenko VF, Sornette A, Sornette D, Rodkin MV (2008) New approach to the characterization of M max and of the tail of the distribution of earthquake magnitudes. Pure Appl Geophys 165(5):847–888

    Article  Google Scholar 

  • Pisarenko VF, Sornette A, Sornette D, Rodkin MV (2014) Characterization of the tail of the distribution of earthquake magnitudes by combining the GEV and GPD descriptions of extreme value theory. Pure Appl Geophys 171(8):1599–1624

    Article  Google Scholar 

  • Raschke M (2011) Inference for the truncated exponential distribution. Stoch Env Res Risk Assess 26(1):127–138

    Article  Google Scholar 

  • Richter CF (1958) Elementary seismology. Freeman, San Francisco

    Google Scholar 

  • Rong Y, Jackson DD, Magistrale H, Goldfinger C (2014) Magnitude limits of subduction zone earthquakes. Bull Seismol Soc Am 104(5):2359–2377

    Article  Google Scholar 

  • Stein RS, Hanks TC (1998) M ≥ 6 earthquakes in southern California during the twentieth century: no evidence for a seismicity or moment deficit. Bull Seismol Soc Am 88(3):635–652

    Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346

    Google Scholar 

  • Working Group on California Earthquake Probabilities (WGCEP) (1995) Seismic hazards in southern California: probable earthquakes, 1994–2024. Bull Seismol Soc Am 85(2):379–439

    Google Scholar 

  • Yegulalp TM, Kuo JT (1974) Statistical prediction of occurrence of maximum magnitude earthquakes. Bull Seismol Soc Am 64(2):393–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Vermeulen.

Appendix 1: Condition of existence of the Tate–Pisarenko solution of m max

Appendix 1: Condition of existence of the Tate–Pisarenko solution of m max

In practice, it has been noticed that when the Tate–Pisarenko method was applied in an iterative fashion and it diverges on some occasions. In this Appendix, we present a condition for the convergence (and divergence) of this method.

Let m denote the unknown, true maximum magnitude. Assume that m is estimated by means of iteration, which means

$$ m_{i + 1} = m_{0} - \frac{{1 - \exp \left[ { - \beta (m_{i} - m_{\hbox{min} } )} \right]}}{{n\beta \exp \left[ { - \beta (m_{i} - m_{\hbox{min} } )} \right]}}, $$
(20)

or

$$ m_{i + 1} = m_{0} - \frac{1}{n\beta } + \frac{1}{n\beta }\exp \left[ { - \beta (m_{i} - m_{\hbox{min} } )} \right]. $$
(21)

Claim

There exists \( m \) such that

$$ m = m_{0} - \frac{1}{n\beta } + \frac{{\exp \left[ { - \beta (m_{i} - m_{\hbox{min} } )} \right]}}{n\beta }. $$
(22)

Now, let \( m' = \beta \left( {m - m_{\hbox{min} } } \right) \); therefore, \( m' = m'_{0} - 1/n + \exp (m')/n \) (for iteration, \( m'_{i + 1} = m'_{0} - 1/n + \exp (m'_{i} )/n \)).

Consider subsequently

$$ m' = m_{0} ' - \frac{1}{n} + \exp (m'). $$
(23)

Taking the shape of LHS and RHS into consideration (Fig. 1), note that for Eq. (23) to have exactly one root, it must be that LHS = RHS precisely, where the first derivatives of LHS and RHS coincide; that is, where the derivative of RHS = 1. This turns out to be where \( m' = \ln (n) \). Therefore, for one root, it must be the case that

$$ \ln (n) = m_{0} ' - \frac{1}{n} + \frac{{\exp \left[ {\ln (n)} \right]}}{n}, $$
(24)

that is

$$ \ln (n) = m_{0} ' - \frac{1}{n} + 1. $$
(25)

After further graphical consideration, we find that the equation has no roots if (the curve moved vertically upward in Fig. 1)

$$ \ln (n) < m_{0} ' - \frac{1}{n} + 1, $$
(26)

and

$$ \therefore \ln (n) < \beta \left( {m_{\hbox{max} }^{\text{obs}} - m_{\hbox{min} } } \right) - \frac{1}{n} + 1. $$
(27)
Fig. 1
figure 1

Thick curve represents the curve \( (m') = m_{0} - 1/n + \exp (m')/n \), and the thin line represents the unit function \( g(m') = m' \)

For large n,

$$ \ln (n) < \beta \left( {m_{\hbox{max} }^{\text{obs}} - m_{\hbox{min} } } \right) + 1. $$
(28)

Equation (20) has exactly two roots when (the curve moved vertically downward in Fig. 1)

$$ \ln (n) > m_{0} ' - \frac{1}{n} + 1, $$
(29)

or equivalently

$$ \therefore \ln (n) > \beta \left( {m_{\hbox{max} }^{\text{obs}} - m_{\hbox{min} } } \right) - \frac{1}{n} + 1. $$
(30)

For large n,

$$ \ln (n) > \beta \left( {m_{\hbox{max} }^{\text{obs}} - m_{\hbox{min} } } \right) + 1. $$
(31)

If a fixed point (solution) does exist, it would usually indicate two fixed points. In addition, the following can be stated:

  1. 1.

    It is possible for the smaller fixed point to be less than zero, and, therefore, smaller than \( m_{\hbox{max} }^{\text{obs}} \). In either event, the smaller fixed point is neither appropriate nor can it be evaluated easily, which is a possible point of convergence for iteration. If convergence does take place, it must converge to the larger fixed point.

  2. 2.

    If the larger fixed point is less than \( m_{\hbox{max} }^{\text{obs}} \), iteration would not converge, as it is clear that a point of convergence for the iteration would have to be larger than \( m_{\hbox{max} }^{\text{obs}} \).

  3. 3.

    It can be verified graphically that if the smaller fixed point was much smaller than \( \ln (n) \), the larger fixed point would be much larger than \( \ln (n) \).

Appendix 2: Asymptotic equivalence of the Cooke–Kijko and Tate–Pisarenko estimates

It is known (Kijko and Singh 2011) that both the generic equation of Cooke and the Tate–Pisarenko estimates produce asymptotically unbiased estimates, which strongly suggests a measure of equivalence between the two estimators. In this section, we show that Cooke’s so-called generic equation, used with the truncated Gutenberg–Richter frequency–magnitude relation, and the Tate–Pisarenko method from Kijko and Singh (2011) are asymptotically equivalent for a large number of earthquakes. In most of the estimators that Kijko and Singh (2011) introduced, they made use of an equation in the form:

$$ m_{\hbox{max} } = m_{\hbox{max} }^{\text{obs}} + \Delta . $$
(32)

Specifically, Cooke’s generic equation has

$$ \Delta = \int\limits_{{m_{\hbox{min} } }}^{{m_{\hbox{max} } }} {\left[ {F\left( {x|m_{\hbox{max} } } \right)} \right]^{n} {\text{d}}x} , $$
(33)

and the Tate–Pisarenko estimate has

$$ \Delta = \frac{1}{{n \times f\left( {m_{\hbox{max} } |m_{\hbox{max} } } \right)}}, $$
(34)

where \( f( \cdot |m_{\hbox{max} } ) \) and \( F( \cdot |m_{\hbox{max} } ) \), respectively, are the density and distribution functions of earthquake magnitudes, given the maximum magnitude.

Let \( F(m|m_{\hbox{max} } ) \) and \( f(m|m_{\hbox{max} } ) \) take the form of the Gutenberg–Richter frequency–magnitude distribution:

$$ F\left( {m|m_{\hbox{max} } } \right) = \left\{ {\begin{array}{*{20}l} {0,} \hfill & {m \le m_{\hbox{min} } } \hfill \\ {\frac{{1 - \exp \left[ {\beta \left( {m - m_{\hbox{min} } } \right)} \right]}}{{1 - \exp \left[ {\beta \left( {m_{\hbox{max} } - m_{\hbox{min} } } \right)} \right]}},} \hfill & {m_{\hbox{min} } \le m \le m_{\hbox{max} } } \hfill \\ {1,} \hfill & {m \ge m_{\hbox{max} } } \hfill \\ \end{array} } \right., $$
(35)
$$ f\left( {m|m_{\hbox{max} } } \right) = \left\{ {\begin{array}{*{20}l} {0,} \hfill & {m \le m_{\hbox{min} } } \hfill \\ {\frac{{ - \beta \exp \left[ {\beta \left( {m - m_{\hbox{min} } } \right)} \right]}}{{1 - \exp \left[ {\beta \left( {m_{\hbox{max} } - m_{\hbox{min} } } \right)} \right]}},} \hfill & {m_{\hbox{min} } \le m \le m_{\hbox{max} } } \hfill \\ {0,} \hfill & {m \ge m_{\hbox{max} } } \hfill \\ \end{array} } \right.. $$
(36)

Subsequently, using Eq. (33) with Cramer’s approximation for large values of \( n \), we have the following (Kijko and Singh 2011):

$$ \Delta = \int\limits_{{m_{\hbox{min} } }}^{{m_{\hbox{max} } }} {\exp \left[ { - n\left( {1 - F\left( {x|m_{\hbox{max} } } \right)} \right)} \right]{\text{d}}x} . $$
(37)

Laplace’s approximation (Compson 2004) leads to an asymptotic evaluation of the integral (37),

$$ \Delta = \frac{{\exp \left[ { - n\left( {1 - F\left( {m_{\hbox{max} } |m_{\hbox{max} } } \right)} \right)} \right]}}{{n \times f\left( {m_{\hbox{max} } |m_{\hbox{max} } } \right)}} = \frac{1}{{n \cdot f\left( {m_{\hbox{max} } |m_{\hbox{max} } } \right)}}, $$
(38)

which is the Tate–Pisarenko estimate in Eq. (34).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vermeulen, P., Kijko, A. More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys. 65, 579–587 (2017). https://doi.org/10.1007/s11600-017-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0048-3

Keywords

Navigation