Log in

High levels of testosterone inhibit ovarian follicle development by repressing the FSH signaling pathway

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The effect of high concentrations of testosterone on ovarian follicle development was investigated. Primary follicles and granulosa cells were cultured in vitro in media supplemented with a testosterone concentration gradient. The combined effects of testosterone and follicle-stimulating hormone (FSH) on follicular growth and granulosa cell gonadotropin receptor mRNA expression were also investigated. Follicle growth in the presence of high testosterone concentrations was promoted at early stages (days 1–7), but inhibited at later stage (days 7–14) of in vitro culture. Interestingly, testosterone-induced follicle development arrest was rescued by treatment with high concentrations of FSH (400 mIU/mL). In addition, in cultured granulosa cells, high testosterone concentrations induced cell proliferation, and increased the mRNA expression level of FSH receptor (FSHR), and luteinized hormone/choriogonadotropin receptor. It was concluded that high concentrations of testosterone inhibited follicle development, most likely through regulation of the FSH signaling pathway, although independently from FSHR downregulation. These findings are an important step in further understanding the pathogenesis of polycystic ovary syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo W, Gumen A, Haughian JM, et al. The role of luteinizing hormone in regulating gene expression during selection of a dominant follicle in cattle. Biol Reprod, 2011,84(2):369–378

    Article  CAS  PubMed  Google Scholar 

  2. Wigglesworth K, Lee KB, O'Brien MJ, et al. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci USA, 2013,110(39):E3723–3729

    Article  Google Scholar 

  3. Cheng XB, Jimenez M, Desai R, et al. Characterizing the neuroendocrine and ovarian defects of androgen receptor-knockout female mice. Am J Physiol Endocrinol Metab, 2013,305(6):E717–726

    Article  Google Scholar 

  4. Hossain MM, Cao M, Wang Q, et al. Altered expression of miRNAs in a dihydrotestosterone-induced rat PCOS model. J Ovarian Res, 2013,6(1):36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zhang CP, Yang JL, Zhang J, et al. Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology, 2011,152(6): 2437–2447

    Article  CAS  PubMed  Google Scholar 

  6. Knight PG, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction, 2001,121(4):503–512

    Article  CAS  PubMed  Google Scholar 

  7. Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod, 2009,80(4):685–695

    Article  CAS  PubMed  Google Scholar 

  8. Sánchez F, Adriaenssens T, Romero S, et al. Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice. Biol Reprod, 2010,83(4):514–524

    Article  PubMed  Google Scholar 

  9. Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol, 2002,20(13):3001–3015

    Article  CAS  PubMed  Google Scholar 

  10. Sorokin SP, Hoyt RF ffixJr, McNelly NA. Factors influencing fetal macrophage development: I. Reactions of the tumor necrosis factor-alpha cascade and their inhibitors. Anat Rec, 1996,246(4):481–497

    Article  CAS  PubMed  Google Scholar 

  11. Stocco C. Tissue physiology and pathology of aromatase. Steroids, 2012,77(1–2): 27–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tetsuka M, Whitelaw PF, Bremner WJ, et al. Developmental regulation of androgen receptor in rat ovary. J Endocrinol, 1995,145(3):535–543

    Article  CAS  PubMed  Google Scholar 

  13. Hillier SG, Tetsuka M. Role of androgens in follicle maturation and atresia. Baillieres Clin Obstet Gynaecol, 1997,11(2):249–260

    Article  CAS  PubMed  Google Scholar 

  14. Weil SJ, Vendola K, Zhou J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J Clin Endocrinol Metab, 1998,83(7):2479–285

    Article  CAS  PubMed  Google Scholar 

  15. Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod, 2006,75(6):924–932

    Article  CAS  PubMed  Google Scholar 

  16. Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol Endocrinol, 2010,24(7):1393–1403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. McKenna TJ, Loughlin T, Daly L, et al. Variable clinical and hormonal manifestations of hyperandrogenemia. Metabolism, 1984,33(8):714–717

    Article  CAS  PubMed  Google Scholar 

  18. Loughlin T, Cunningham SK, Culliton M, et al. Altered androstenedione and estrone dynamics associated with abnormal hormonal profiles in amenorrheic subjects with weight loss or obesity. Fertil Steril, 1985,43(5):720–725

    CAS  PubMed  Google Scholar 

  19. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev, 1997,18(6):774–800

    CAS  PubMed  Google Scholar 

  20. Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod, 2012,86(5):149, 1–12

    Article  Google Scholar 

  21. Balen AH, Conway GS, Kaltsas G, et al. Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum Reprod, 1995,6(8):2107–2111

    Google Scholar 

  22. Wachs DS, Coffler MS, Malcom PJ, et al. Increased androgen response to follicle-stimulating hormone administration in women with polycystic ovary syndrome. J Clin Endocrinol Metab, 2008,93(5):1827–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Teissier MP, Chable H, Paulhac S, et al. Comparison of follicle steroidogenesis from normal and polycystic ovaries in women undergoing IVF: relationship between steroid concentrations, follicle size, oocyte quality and fecundability. Hum Reprod, 2000,15(12):2471–2477

    Article  CAS  PubMed  Google Scholar 

  24. Jabara S, Coutifaris C. In vitro fertilization in the PCOS patient: clinical considerations. Semin Reprod Med, 2003, 21(3):317–324

    Article  PubMed  Google Scholar 

  25. Caldwell AS, Middleton LJ, Jimenez M, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology, 2014,155(8):3146–3159

    Article  CAS  PubMed  Google Scholar 

  26. Daniel SA, Armstrong DT. Enhancement of follicle-stimulating hormone-induced aromatase activity by androgens in cultured rat granulosa cells. Endocrinology, 1980,107(4):1027–1033

    Article  CAS  PubMed  Google Scholar 

  27. Fulghesu AM, Apa R, Belosi C, et al. Recombinant versus urinary follicle-stimulating hormone in the low-dose regimen in anovulatory patients with polycystic ovary syndrome: a safer and more effective treatment. Horm Res, 2001,55(5):224–228

    Article  CAS  PubMed  Google Scholar 

  28. Ajossa S, Guerriero S, Paoletti AM, et al. The treatment of polycystic ovary syndrome. Minerva Ginecol, 2004,56(1): 15–26

    CAS  PubMed  Google Scholar 

  29. Duda M, Durlej-Grzesiak M, Tabarowski Z, et al. Effects of testosterone and 2-hydroxyflutamide on progesterone receptor expression in porcine ovarian follicles in vitro. Reprod Biol, 2012,12(4):333–340

    Article  PubMed  Google Scholar 

  30. Itami S, Yasuda K, Yoshida Y, et al. Co-culturing of follicles with interstitial cells in collagen gel reproduced follilcular development accompanied with theca cell layer formation. Reprod Biol Endocrinol, 2011,17(9):159

    Article  Google Scholar 

  31. Zhao KK, Cui YG, Jiang YQ, et al. Effect of HSP10 on apoptosis induced by testosterone in cultured mouse ovarian granulosa cells. Eur J Obstet Gynecol Reprod Biol, 2013,171(2):301–306

    Article  CAS  PubMed  Google Scholar 

  32. Alexandraki KI, Kaltsas GA. Endocrinopathies and other disorders inducing a polycystic ovary syndrome phenotype. Front Horm Res, 2013,40:142–157

    Article  CAS  PubMed  Google Scholar 

  33. Luchetti CG, Solano ME, Sander V, et al. Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function. J Reprod Immunol, 2004,64(1–2):59–74

    Article  CAS  PubMed  Google Scholar 

  34. Sander V, Luchetti CG, Solano ME, et al. Role of the N, N'-dimethylbiguanide metformin in the treatment of female prepuberal BALB/c mice hyperandrogenized with dehydroepiandrosterone. Reproduction, 2006,131(3):591–602

    Article  CAS  PubMed  Google Scholar 

  35. Barad DH, Gleicher N. Increased oocyte production after treatment with dehydroepiandrosterone. Fertil Steril, 2005, 84(3):756

    Article  PubMed  Google Scholar 

  36. Gleicher N, Weghofer A, Barad DH. The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment? Reprod Biol Endocrinol, 2011,17(9):116

    Article  Google Scholar 

  37. Walters KA, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biol Reprod, 2008,78(3):380–389

    Article  CAS  PubMed  Google Scholar 

  38. Vendola KA, Zhou J, Adesanya OO, et al. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest, 1998,101(12):2622–2629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Pradeep PK, Li X, Peegel H, et al. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology, 2002,143(8):2930–2935

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Leader A, Tsang BK. Follicular stage-dependent regulation of apoptosis and steroidogenesis by prohibitin in rat granulosa cells. J Ovarian Res, 2013,6(1):23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kriplani A, Agarwal N. Effects of metformin on clinical and biochemical parameters in polycystic ovary syndrome. J Reprod Med, 2004,49(5):361–367

    CAS  PubMed  Google Scholar 

  42. Elia E, Sander V, Luchetti CG, et al. The mechanisms involved in the action of metformin in regulating ovarian function in hyperandrogenized mice. Mol Hum Reprod, 2006,12(8):475–481

    Article  CAS  PubMed  Google Scholar 

  43. Belgorosky D, Sander VA, Yorio MP, et al. Hyperandrogenism alters intraovarian parameters during early folliculogenesis in mice. Reprod Biomed Online, 2010,20(6): 797–807

    Article  CAS  PubMed  Google Scholar 

  44. Gervásio CG, Bernuci MP, Silva-de-Sá MF, et al. The role of androgen hormones in early follicular development. ISRN Obstet Gynecol, 2014,10(2014):818010.

    Google Scholar 

  45. Mersereau JE, Evans ML, Moore DH, et al. Luteal phase estrogen is decreased in regularly menstruating older women compared with a reference population of younger women. Menopause, 2008,15(3):482–486

    Article  PubMed  Google Scholar 

  46. Passos MJ, Vasconcelos GL, Silva AW, et al. Accelerated growth of bovine preantral follicles in vitro after stimulation with both FSH and BMP-15 is accompanied by ultrastructural changes and increased atresia. Theriogenology, 2013,79(9):1269–1277

    Article  CAS  PubMed  Google Scholar 

  47. Chaves RN, Duate AB, Rodrigues GQ, et al. The effects of insulin and follicle-simulating hormone (FSH) during in vitro development of ovariangoat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles. Biol Reprod, 2012,87(3):69

    Article  PubMed  Google Scholar 

  48. Chen ZJ, Shi YH, Li Y, et al. Clinical analysis of assistant treatment proposals for infertile women with polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi (Chinese), 2008,43(8):571–575

    Google Scholar 

  49. Laisk T, Haller-Kikkatalo K, Laanpere M, et al. Androgen receptor epigenetic variations influence early follicular phase gonadotropin levels. Acta Obstet Gynecol Scand, 2010,89(12):1557–1563

    Article  CAS  PubMed  Google Scholar 

  50. Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet, 2011,43(1):55–59

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Gao  (高 飞) or Zi-jiang Chen  (陈子江).

Additional information

These authors contributed equally to this work.

This project was supported by grants from the National Basic Research Program of China (973 program) (Nos. 2012CB944700 and 2011CB944502), the National Natural Science Foundation of China (No. 31371453), the Scientific Research Foundation of Shandong Province of Outstanding Young Scientist (No. 2012BSE27089), and 2012 Shandong Province Post-Doctoral Innovation Foundation (Nos. 201102017 and 201203052).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Cui, Yq., Zhao, H. et al. High levels of testosterone inhibit ovarian follicle development by repressing the FSH signaling pathway. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 723–729 (2015). https://doi.org/10.1007/s11596-015-1497-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1497-z

Key words

Navigation