Log in

Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) nanoparticles impart outstanding mechanical properties to organic-inorganic nanocomposites in bone. Inspired by the composite structure of HA nanoparticles and collagen in bone, a high performance HA/gelatin nanocomposite was first developed. The nanocomposites have much better mechanical properties (elongation at break 29.9%, tensile strength 90.7 MPa, Young’s modulus 5.24 GPa) than pure gelatin films (elongation at break 9.3%, tensile strength 90.8 MPa, Young’s modulus 2.5 GPa). In addition, the composite films keep a high transmittance in visible wavelength range from 0% to 60% of the HA solid content. These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules. This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiner S, Wagner HD. The Material Bone: Structure-Mechanical Function Relations[J]. Annual Review of Materials Science, 1998, 28(1): 271–298

    Article  CAS  Google Scholar 

  2. Qi C, Musetti S, Fu LH, Zhu Y, Huang L. Biomolecule-assisted Green Synthesis of Nanostructured Calcium Phosphates and Their Biomedical Applications[J]. Chem. Soc. Rev., 2019, 48(10): 2 698–2 737

    Article  CAS  Google Scholar 

  3. Launey ME, Buehler MJ, Ritchie RO, On the Mechanistic Origins of Toughness in Bone[J]. Annual Review of Materials Research, 2010, 40(1): 25–53

    Article  CAS  Google Scholar 

  4. Habraken W, Habibovic P, Epple M, et al. Calcium Phosphates in Biomedical Applications: Materials for the Future[J]. Materials Today, 2016, 19(2): 69–87

    Article  CAS  Google Scholar 

  5. Guan QF, Ling ZC, Han ZM, et al. Ultra-Strong. Ultra-Tough, Transparent, and Sustainable Nanocomposite Films for Plastic Substitute[J]. Matter., 2020, 3(4): 1 308–1 317

    Article  Google Scholar 

  6. Zhao C, Zhang P, Zhou J, et al. Layered Nanocomposites by Shear-flow-induced Alignment of Nanosheets[J]. Nature, 2020, 580(7802): 210–215

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H, Liu S, Wei Y, et al. Multiscale Engineered Artificial Tooth Enamel[J]. Science, 2022, 375(6580): 551–556

    Article  CAS  PubMed  Google Scholar 

  8. Venkatesan J, Kim SK. Nano-hydroxyapatite Composite Biomaterials for Bone Tissue Engineering-A Review[J]. J. Biomed. Nanotechnol., 2014, 10(10): 3 124–3 140

    Article  CAS  Google Scholar 

  9. Huang Z, Wan Y, Peng M, et al. Incorporating Nanoplate-like Hydroxyapatite into Polylactide for Biomimetic Nanocomposites via Direct Melt Intercalation[J]. Composites Science and Technology, 2020, 185: 107 903

    Article  CAS  Google Scholar 

  10. Yang B, Li M, Wu Y, et al. Preparation and Characterization of Bonelike Hydroxyapatite/poly(methyl methacrylate) Composite Biomaterials[J]. Science and Engineering of Composite Materials, 2012, 0(0): 1–7

    Google Scholar 

  11. Šupová M, Martynková GS, Barabaszová K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review[J]. Science of Advanced Materials, 2011, 3(1): 1–25

    Article  Google Scholar 

  12. Supova M. Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review[J]. J. Mater. Sci. Mater Med., 2009, 20(6): 1 201–1 213

    Article  CAS  Google Scholar 

  13. Haojie D, Liuyun J, Bingli M, et al. Preparation of a Highly Dispersed Nanohydroxyapatite by a New Surface-Modification Strategy Used as a Reinforcing Filler for Poly(lactic-co-glycolide)[J]. Industrial & Engineering Chemistry Research, 2018: 57(50): 17 119–17 128

    Article  CAS  Google Scholar 

  14. ** X, Chen X, Cheng Y, et al. Effects of Hydrothermal Temperature and Time on Hydrothermal Synthesis of Colloidal Hydroxyapatite Nanorods in the Presence of Sodium Citrate[J]. J. Colloid Interface Sci., 2015, 450: 151–158

    Article  CAS  PubMed  Google Scholar 

  15. ** X, Zhuang J, Zhang Z, et al. Hydrothermal Synthesis of Hydroxyapatite Nanorods in the Presence of Sodium Citrate and Its Aqueous Colloidal Stability Evaluation in Neutral pH[J]. J. Colloid. Interface Sci., 2015, 443: 125–30

    Article  CAS  PubMed  Google Scholar 

  16. Hu YY, Rawal A, Schmidt-Rohr K. Strongly Bound Citrate Stabilizes the Apatite Nanocrystals in Bone[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(52): 22 425–22 429

    Article  CAS  Google Scholar 

  17. Delgado-Lopez JM, Bertolotti F, Lyngso J, et al. The Synergic Role of Collagen and Citrate in Stabilizing Amorphous Calcium Phosphate Precursors with Platy Morphology[J]. Acta Biomater., 2017, 49: 555–562

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Xu Z, Zhao W, et al. Isoexergonic Conformations of Surface-Bound Citrate Regulated Bioinspired Apatite Nanocrystal Growth[J]. ACS Appl Mater Interfaces, 2016, 8(41): 28 116–28 123

    Article  CAS  Google Scholar 

  19. Santos C, Almeida MM, Costa ME. Morphological Evolution of Hydroxyapatite Particles in the Presence of Different Citrate:Calcium Ratios[J]. Crystal Growth & Design, 2015, 15(9): 4 417–4 426

    Article  CAS  Google Scholar 

  20. Veis A. The Physical Chemistry of Gelatin[J]. Int. Rev. Connect. Tissue Res., 1965, 3: 113–200.

    Article  CAS  PubMed  Google Scholar 

  21. Bigi A, Panzavolta S, Roveri N. Hydroxyapatite-gelatin Films: A Structural and Mechanical Characterization[J]. Biomaterials, 1998, 19(7–9): 739–744

    Article  CAS  PubMed  Google Scholar 

  22. Chang MC, Ko CC, Douglas WH. Preparation of Hydroxyapatite-gelatin Nanocomposite[J]. Biomaterials, 2003, 24(17): 2 853–2 862

    Article  CAS  Google Scholar 

  23. Teng S, Shi J, Peng B, et al. The Effect of Alginate Addition on the Structure and Morphology of Hydroxyapatite/Gelatin Nanocomposites[J]. Composites Science and Technology, 2006, 66(11–12): 1 532–1 538

    Article  CAS  Google Scholar 

  24. Wu X, Liu Y, Wang W, et al. Improved Mechanical and Thermal Properties of Gelatin Films Using a Nano Inorganic Filler[J]. Journal of Food Process Engineering, 2017, 40(3): 1–10

    Article  Google Scholar 

  25. Zhang R, Hu H, Liu Y, et al. Homogeneously Dispersed Composites of Hydroxyapatite Nanorods and Poly(lactic acid) and Their Mechanical Properties and Crystallization Behavior[J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105 841

    Article  CAS  Google Scholar 

  26. Tan J, ** X, Chen M. Bio-inspired Synthesis of Aqueous Nanoapatite Liquid Crystals[J]. Sci. Rep., 2019, 9(1): 466

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tan J, Liu Y, Gong J, et al. Non-aqueous Liquid Crystals of Hydroxyapatite Nanorods[J]. Acta Biomater., 2020, 116: 383–390

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, ** X, Tan J, et al. Large-scale Synthesis of Water-soluble Luminescent Hydroxyapatite Nanorods for Security Printing[J]. J. Colloid. Interface Sci., 2016, 468: 300–306

    Article  CAS  PubMed  Google Scholar 

  29. Dou L, Zhang Y, Sun H. Advances in Synthesis and Functional Modification of Nanohydroxyapatite[J]. Journal of Nanomaterials, 2018, 2018: 1–7

    Article  Google Scholar 

  30. Tan KM, T** SC, Chan C, et al. High Relative Humidity Sensing Using Gelatin-coated Long Period Grating[J]. Proceedings of SPIE, 2005, 5 855: 375–378

    Article  Google Scholar 

  31. Kuo D, Nishimura T, Kajiyama S, et al. Bioinspired Environmentally Friendly Amorphous CaCO3-Based Transparent Composites Comprising Cellulose Nanofibers[J]. ACS Omega., 2018, 3(10): 12 722–12 729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan **ong  (熊焰).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the Natural Science Foundation of Hubei Province (No. 2018CFB710), and the Opening Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry (No. 202107B07), Hubei University of Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Wu, M., Li, Y. et al. Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 298–308 (2024). https://doi.org/10.1007/s11595-024-2883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2883-9

Key words

Navigation