Log in

In-situ Synthesis of Cr3C2 Nanosheets by Carbon Reduction Route from Cr2AlC

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Carbon black and Cr2AlC were used as raw materials to obtain a large number of Cr3C2 nanosheets by means of the molten salt heat treatment at 1 100 °C for 1.5 hours. Results showed that carbon black can promote the decomposition of a large number of Cr2AlC to form Cr3C2 and Cr7C3 nanoparticles at 1 100 °C in the absence of molten salt. Under a molten salt environment, carbon black can promote the complete decomposition of Cr2AlC to form Cr3C2 and Cr7C3 nanosheets. The thickness of chromium carbide nanosheets is approximately 10–20 nm, and the length is approximately 100–200 nm. The addition of excess carbon black can promote the complete decomposition of Cr2AlC into a material with Cr3C2 as the main phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Gao Y, **ao B, et al. The Electronic, Mechanical Properties and Theoretical Hardness of chromium Carbides By First-Principles Calculations[J]. J. Alloy. Compd., 2011, 509(17): 5242–5249

    Article  CAS  Google Scholar 

  2. Loubière S, Laurent CH, Bonino JP, et al. Elaboration, Microstructure and Reactivity of Cr3C2 Powders of Different Morphology[J]. Mater. Res. Bull., 1995, 30(12): 1535–1546

    Article  Google Scholar 

  3. Detroye M, Reniers F, Herman CB, et al. Synthesis and Characterisation of Chromium Carbides[J]. Appl. Surf. Sci, 1997, 120(1–2): 85–93

    Article  CAS  Google Scholar 

  4. Poetschke J, Richter V, Holke R. Influence and Effectivity of VC and Cr3C2 Grain Growth Inhibitors on Sintering of Binderless Tungsten Carbide[J]. Int. J. Refract. Met. Hard. Mater., 2012, 31:218–223

    Article  CAS  Google Scholar 

  5. Laima L, Jia, YU, Shaoguang L, et al. Thermal Shock Resistances of Femncr/Cr3C2 Coatings Deposited by Arc Spraying[J]. J. Wuhan. Univer. Tech, 2010, 25(2): 243–247

    Article  Google Scholar 

  6. Berger LM, Stolle S, Gruner W, et al. Investigation of the Carbothermal Reduction Process of Chromium Oxide by Micro- and Lab-Scale Methods[J]. Int. J. Refract. Met. Hard. Mater, 2001, 19(2): 109–121

    Article  CAS  Google Scholar 

  7. Anacleto N, Ostrovski O. Solid-State Reduction of Chromium Oxide by Methane-Containing Gas[J]. Metall. Mater. Trans. B, 2004, 35(4): 609–615

    Article  Google Scholar 

  8. Fantozzi D, Matikainen V, Uusitalo M, et al. Chlorine Induced High-Temperature Corrosion Mechanisms in HVOF and HVAF Sprayed Cr3C2-Based Hardmetal Coatings[J]. Corros. Sci., 2019, 160: 108166

    Article  CAS  Google Scholar 

  9. Hirota K, Mitani K, Yishinaka M, et al. Simultaneous Synthesis and Consolidation of Chromium Carbides (Cr3C2, Cr7C3 And Cr23C6) by Pulsed Electric-Current Pressure Sintering[J]. Mater. Sci. Eng. A, 2005, 399(1–2): 154–160

    Article  Google Scholar 

  10. Li L, Tang J. Synthesis of Cr7C3 and Cr3C2 by Mechanical Alloying[J]. J. All. Compd., 1994, 9: L1

    Google Scholar 

  11. Kunrath AO, Reimanis IE, Moore JJ. Combustion Synthesis of TiC−Cr3C2 Composites[J]. J. All. Compd., 2001, 329(1–2): 131–135

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  13. Sedlák R, Kovalčíková A, Girman V, et al. Fracture Characteristics of SiC/Grapheme Platelet Composites[J]. J. Eur. Ceram. Soc., 2017, 37: 4307–4314

    Article  Google Scholar 

  14. Yin ZB, Yuan JT, Xu WW, et al. Graphene Nanosheets Toughened TiB2-Based Ceramic Tool Material By Spark Plasma Sintering[J]. Ceram. Int., 2018, 44: 8977–8982

    Article  CAS  Google Scholar 

  15. Luo GQ, Huang, J, **, ZP, et al. Study on Microstructure and Mechanical Performance of Cu−Sno2−MgO Based Composites Prepared by Plasma Activated Sintering[J]. J. Wuhan. Univer. Tech, 2015, 30(6):1152–1158

    Article  CAS  Google Scholar 

  16. Selloni A, Carnevali P, Car R, et al. Localization, Hop**, and Diffusion of Electrons in Molten Salts[J]. Phys. Rev. Lett., 1987, 59(7): 823–826

    Article  CAS  Google Scholar 

  17. Weng W, Wang M Y, Gong X Z, et al. Electrochemical Preparation of V2O3 from NaVO3 and Its Reduction Mechanism[J]. J. Wuhan. Univer. Tech., 2017, 32(5): 1019–1024

    Article  CAS  Google Scholar 

  18. Chai ZN, Ding J, Deng CJ, et al. Ni-Catalyzed Synthesis of Hexagonal Plate-Like Alpha Silicon Nitride from Nitridation of Si Powder in Molten Salt Media[J]. Adv. Powd. Tech, 2016, 27: 1637–1644

    Article  CAS  Google Scholar 

  19. Gai JL, Chen JX, Zhang H, et al. Synthesis of Al2OC Whiskers by Heat Treating Bulk Ti3AlC2 in A Carbon-Containing Environment[J]. Mat. Lett., 2016, 167:73–76

    Article  CAS  Google Scholar 

  20. Racault C, Langlais F, Naslain R, et al. Solid-State Synthesis and Characterization of the Ternary Phase Ti3SiC2[J]. J. Mater. Sci., 1994, 29:3384–3392

    Article  CAS  Google Scholar 

  21. Duong TC, Talapatra A, Son W, et al. On the Stochastic Phase Stability of Ti2AlC−Cr2AlC[J]. Sci. Rep., 2017, 5138: 1–7

    Google Scholar 

  22. Ye DL, HU JH. Practical Inorganic Thermodynamic Data Book[M]. Bei**g: Metallurgical Industry Publishing. 2002

    Google Scholar 

  23. Wang WJ, Gauthier-Brunet V, Bei GP, et al. Powder Metallurgy Processing and Compressive Properties of Ti3AlC2/Al Composites[J]. Mater. Sci. Eng. A, 2011, 530: 168–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangxi Zhang  (张旺玺).

Additional information

Funded by the National Natural Science Foundation of China (No.51864028), Key Scientific and Technological Projects in Henan Province (No.212102210465), Key Scientific Research Project Plan of Colleges and Universities in Henan Province (No.22A430041, 22B430035), National Innovation and Entrepreneurship Training Program for College Students (No.202110465013), National Natural Science Foundation of China (No.U2030207)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Dai, Z., Zhang, W. et al. In-situ Synthesis of Cr3C2 Nanosheets by Carbon Reduction Route from Cr2AlC. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 364–369 (2022). https://doi.org/10.1007/s11595-022-2540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2540-0

Key words

Navigation