Log in

A Pell-Lucas approximation to solve the Abel equation of the second kind

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, a collocation method based on the Pell-Lucas polynomials is presented for the numerical solution of the Abel equation of the second kind. Abel equation of the second kind corresponds to a nonlinear differential equation. As a first step, the matrix forms of the Pell-Lucas polynomials and the assumed solution form are constructed. Then, the first derivative of solution, the nonlinear terms and the initial condition are introduced in matrix forms. By using the evenly spaced collocation points and the matrix relations, nonlinear problem is transformed to a system of the nonlinear algebraic equations. Consequently, the solution of this system gives the coefficients of the assumed approximate solution. In addition, the error analysis is done. Accordingly, an upper bound of the errors is stated. Besides, error estimation technique and the residual improvement technique are presented by using residual function. Moreover, the method is applied to two examples and the comparisons are made with the results of other methods in tables to show the computational efficiency of present method. The code of method and the presented graphics are constituted by using Matlab program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akyüz-Daşcıoğlu, A., Çerdik-Yaslan, H.: The solution of high-order nonlinear ordinary differential equations by Chebyshev series. Appl. Math. Comput. 217, 5658–5666 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Akyüz-Daşcıoğlu, A., Yaslan, H.Ç.: An approximation method for solution of nonlinear integral equations. Appl. Math. Comput. 174, 619–629 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Başhan, A., Karakoç, S.B.G., Geyikli, T.: Approximation of the KdVB equation by the quintic B-spline differential quadrature method. Kuwait J. Sci. 42, 67–92 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Eftekhari, A., Saadatmandi, A.: DE Sinc-Collocation Method for Solving a Class of Second-Order Nonlinear BVPs. Math. Interdisciplinary Research 6, 11–22 (2021)

    Google Scholar 

  5. Horadam, A.F., Swita, B., Filipponi, P.: Integration and Derivative Sequences for Pell and Pell-Lucas Polynomials. Fibonacci Quart. 32, 130–35 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Horadam, A.F., Mahon Bro, J.M.: Pell and Pell-Lucas Polynomials. Fibonacci Quart. 23, 7–20 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Garcia, A., Macias, A., Mielke, E.W.: Stewart-Lyth second-order approach as Abel equation for reconstructing inflationary dynamics. Phys. Lett. A 229, 32–36 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Imani, A., Aminataei, A., Imani, A.: Collocation Method via Jacobi Polynomials for Solving Nonlinear Ordinary Differential Equations. Int. J. Math. Math. Sci. 2011, 673085 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wazwaz, A.M., El-Sayed, S.M.: A new modification of the Adomian decomposition method for linear and nonlinear operators. Appl. Math. Comput. 122, 393–404 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Wazwaz, A.M.: The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Appl. Math. Comput. 216, 1304–1309 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Sadollah, A., Eskandar, H., Guen Yoo, D., Hoon Kim, J.: Approximate solving of nonlinear ordinary differential equations using least square weight function and metaheuristic algorithms. Eng. Appl. Artif. Intell. 40, 117–132 (2015)

    Article  Google Scholar 

  12. Bülbül, B., Sezer, M.: A numerical approach for solving generalized Abel-type nonlinear differential equations. Appl. Math. Comput. 262, 169–177 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Chen, B., García-Bolós, R., Jódar, L., Roselló, M.D.: Chebyshev polynomial approximations for nonlinear differential initial value problems. Nonlinear Anal. 63, e629–e637 (2005)

    Article  MATH  Google Scholar 

  14. Kharrat, B.N., Toma, G.: Differential Transform Method For Solving Initial Value Problems Represented By Strongly Nonlinear Ordinary Differential Equations, Middle-East. J. Sci. Res. 27, 576–579 (2019)

    Google Scholar 

  15. Cesarano, C.: Generalized special functions in the description of fractional diffusive equations. Commun. Appl. Industrial Math. 10, 31–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cesarano, C.: Multi-dimensional Chebyshev polynomials: a non-conventional approach. Commun. Appl. Industrial Math. 10, 1–19 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cesarano, C.: Pseudo-Lucas functions of fractional degree and applications. Axioms 10, 51 (2021)

    Article  Google Scholar 

  18. Güler, C.: A new numerical algorithm for the Abel equation of the second kind. Int. J. Comput. Math. 84, 109–119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caratelli, D., Cesarano, C., Ricci, P.E.: Computation of the Bell-Laplace transforms. Dolomites Research Notes on Approximation 14, 74–91 (2021)

    MathSciNet  Google Scholar 

  20. Dönmez Demir, D., Lukonde, A.P., Kürkçü, Ö.K., Sezer, M.: Pell-Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays. Math. Sci. 15, 55–64 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Borghero, F., Melis, A.: On Szebehely’s problem for holonomic systems involving generalized potential functions. Celest. Mech. Dyn. Astron. 49, 273–284 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Genga, F., Lin, Y., Cui, M.: A piecewise variational iteration method for Riccati differential equations. Comput. Math. Appl. 58, 2518–2522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haager, G., Mars, M.: A self-similar inhomogeneous dust cosmology. Class. Quantum Grav. 15, 1567–1580 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons Fractals 26, 695–700 (2005)

    Article  MATH  Google Scholar 

  25. Lebrun, J.P.M.: On two coupled Abel-type differential equations arising in a magnetostatic problem. II Nuovo Cimento A 103, 1965–1970 (1990)

    MathSciNet  Google Scholar 

  26. Maleknejad, K., Mahmoudi, Y.: Taylor polynomial solutions of high-order nonlinear Volterra-Fredholm integro-differential equation. Appl. Math. Comput. 145, 641–653 (2003)

    MathSciNet  MATH  Google Scholar 

  27. El-Tawil, M.A., Bahnasawi, A.A., Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. Math. Comput. 157, 503–514 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Noor, M.A., Mohyud-Din, S.T., Waheed, A.: Variation of parameters method for solving fifth-order boundary value problems. Appl. Math. Inform. Sci. 2(2), 135–141 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Noor, M.A., Mohyud-Din, S.T.: Solution of singular and nonsingular initial and boundary value problems by modified variational iteration method. Math. Prob. Eng. 2008, 917407 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Dehghan, M., Saadatmandi, A.: The numerical solution of a nonlinear system of second-order boundary value problems using the sinc-collocation method. Math. Comput. Model. 46, 1434–1441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dehghan, M., Shakeri, F.: Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53–59 (2008)

    Article  Google Scholar 

  32. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numerical Methods Part. Diff. Equ. Int. J. 26, 448–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dehghan, M., Salehi, R.: The use of variational iteration method and Adomian decomposition method to solve the Eikonal equation and itsapplication in the reconstruction problem. Commun. Numer. Methods Eng. 27, 524–540 (2011)

    MATH  Google Scholar 

  35. Gülsu, M., Öztürk, Y., Sezer, M.: On the solution of the Abel equation of the second kind by the shifted Chebyshev polynomials. Appl. Math. Comput. 217, 4827–4833 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Izadi, M., Yüzbaşı, Ş., Baleanu, D.: A Taylor-Chebyshev approximation technique to solve the 1D and 2D nonlinear Burgers equations, Mathematical Sciences, 1-13 (2021)

  37. Izadi, M., Yüzbaşı, Ş, Noeiaghdam, S.: Approximating solutions of non-linear Troesch’s problem via an efficient quasi-linearization Bessel approach. Math. 9, 1841 (2021)

    Article  Google Scholar 

  38. Izadi, M., Yüzbaşı, Ş., Cattani, C.: Approximating solutions to fractional-order Bagley-Torvik equation via generalized Bessel polynomial on large domains, Ricerche di Matematica, 1-27 (2021)

  39. Alvarez, M.J., Gasull, A., Giacomini, H.: A new uniqueness criterion for the number of periodic orbits Abel equations. J. Diff. Eq. 234, 161–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mak, M.K.: Solutions generating technique for Abel-type nonlinear ordinary differential equations. Comput. Math. Appl. 41, 1395–1401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mak, M.K., Harko, T.: Addendum to “Exact causal viscous cosmologies.” Gen. Rel. Gray 31, 273–274 (1999)

  42. Mak, M.K., Harko, T.: Full causal bulk-viscous cosmological models. J. Math. Phys. 39, 5458–5476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lakestani, M.: Mehdi Dehghan, Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinalfunctions. Comput. Phys. Commun. 181, 957–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Merdan, M.: On the solutions of nonlinear fractional Klein-Gordon equation with modified Riemann-Liouville derivative. Appl. Math. Comput. 242, 877–888 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Markakis, M.P.: Closed-form solutions of certain Abel equations of the first kind. Appl. Math. Lett. 22, 1401–1405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Razzaghi, M., Yousefi, S.: Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simulation 70, 1–8 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Eslahchi, M.R., Dehghan, M., Ahmadi Asl, S.: The general Jacobi matrix method for solving some nonlinear ordinary differential equations. Appl. Math. Model. 36, 3387–3398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rawashdeh, M.S., Maitama, S.: Solving nonlinear ordinary differential equations using the NDM. J. Appl. Anal. Comput. 5, 77–88 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Şahin, M., Sezer, M.: Pell-Lucas Collocation Method for Solving High-Order Functional Differential Equations with Hybrid Delays. Celal Bayar University J. Sci. 14, 141–149 (2018)

    Google Scholar 

  50. Usman, M., Rashid, I., Zubair, T., Iqbal, I., Mohyud-Din, S.T.: A new algorithm for linear generalized Abel’s integral equations. Intern. J. Modern Math. Sci. 8(1), 22–26 (2013)

    Google Scholar 

  51. Usman, M., Zubair, T., Rashid, I., Khan, N., Iqbal, U., Mohyud-Din, S.T.: A new algorithm for linear and nonlinear Abel’s integral equations. Intern. J. Modern Math. Sci. 8(2), 123–129 (2013)

    Google Scholar 

  52. Mittal, R.C., Jiwari, R.: A higher order numerical scheme for some nonlinear differential equations models in biology. Int. J. Comput. Methods Eng. Sci. Mech. 12(3), 134–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jiwari, R., Pandit, S., Mittal, R.C.: Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183, 600–616 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Abbasbandy, S.: A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials. J. Comput. Appl. Math. 207, 59–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Abbasbandy, S.: Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method. Appl. Math. Comput. 172, 485–490 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Gümgüm, S., Baykuş Savaşaneril, N., Kürkçü, Ö.K., Sezer, M.: Lucas polynomial solution of nonlinear differential equations with variable delays. Hacet. J. Math. Stat 49, 553–564 (2020)

    MathSciNet  MATH  Google Scholar 

  57. Vanani, S.K., Aminataei, A.: On the numerical solution of differential equations of Lane-Emden type. Comput. Math. Appl. 59(8), 2815–2820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Vanani, S.K., Aminataei, A.: On the numerical solution of nonlinear delay differential equations. J. Concr. Appl. Math. 8(4), 568–576 (2010)

  59. Alavizadeh, S.R., Maalek Ghaini, F.M.: Numerical solution of higher-order linear and nonlinear ordinary differential equations with orthogonal rational Legendre functions. J. Math. Extension 8(4), 109–130 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Bayin, S.S.: Solutions of Einstein’s field equations for static fluid spheres. Phys. Rev. D 18, 2745–2751 (1978)

    Article  MathSciNet  Google Scholar 

  61. Yüzbaşı, Ş: A collocation approach to solve the Riccati-type differential equation systems. Int. J. Comput. Math. 89, 2180–2197 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yüzbaşı, Ş: A collocation method based on Bernstein polynomials to solve nonlinear Fredholm-Volterra integro-differential equations. Appl. Math. Comput. 273, 142–154 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Yüzbaşı, Ş: An operational method for solutions of Riccati type differential equations with functional arguments. J. Taibah University Sci. 14, 661–669 (2020)

    Article  Google Scholar 

  64. Yüzbaşı, Ş: A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics. Math. Methods Appl. Sci. 34, 2218–2230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yüzbaşı, Ş: A numerical approximation based on the Bessel functions of first kind for solutions of Riccati type differential-difference equations. Comput. Math. Appl. 64, 1691–1705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yüzbaşı, Ş: A numerical scheme for solutions of a class of nonlinear differential equations. J. Taibah University Sci. 11, 1165–1181 (2017)

    Article  Google Scholar 

  67. Yüzbaşı, Ş, Yıldırım, G.: Legendre Collocation Method to Solve the Riccati Equations with Functional Arguments. Int. J. Comput. Methods 17, 2050011 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yüzbaşı, Ş, Yıldırım, G.: Pell-Lucas collocation method for numerical solutions of two population models and residual correction. J. Taibah University Sci. 14, 1262–1278 (2020)

    Article  Google Scholar 

  69. Yüzbaşı, Ş, Yıldırım, G.: Pell-Lucas collocation method to solve high-order linear Fredholm-Volterra integro-differential equations and residual correction. Turk. J. Math. 44, 1065–1091 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yüzbaşı, Ş, Karaçayır, M.: A Galerkin-like scheme to solve Riccati equations encountered in quantum physics. J. Phys: Conf. Ser. 766, 012036 (2016)

    Google Scholar 

  71. Yüzbaşı, Ş, Sezer, M.: An exponential approach for the system of nonlinear delay integro-differential equations describing biological species living together. Neural Comput. Appl. 27, 769–779 (2016)

    Article  Google Scholar 

  72. Yüzbaşı, Ş, Şahin, N.: On the solutions of a class of nonlinear ordinary differential equations by the Bessel polynomials. J. Numer. Math. 20, 55–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  73. Yüzbaşı, Ş: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 219, 6328–6243 (2013)

    MathSciNet  MATH  Google Scholar 

  74. Geyikli, T., Karakoç, S.B.G.: Subdomain finite element method with quartic B-splines for the modified equal width wave equation. Comput. Math. Math. Phys. 3, 410–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  75. Harko, T., Mak, M.K.: Relativistic dissipative cosmological models and differential equation. Comput. Math. Appl. 46, 849–853 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  76. Gavrilov, V.R., Ivashchuk, V.D., Melnikov, V.N.: Multidimensional integrable vacuum cosmology with two curvatures. Class. Quantum Grav. 13, 3039–3056 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang, Z., Liao, S.: A HAM-based wavelet approach for nonlinear ordinary differential equations. Commun. Nonlinear Sci. Numer. Simul. 48, 439–453 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for all helpful comments to improve their manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şuayip Yüzbaşı.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüzbaşı, Ş., Yıldırım, G. A Pell-Lucas approximation to solve the Abel equation of the second kind. Ricerche mat (2022). https://doi.org/10.1007/s11587-022-00723-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-022-00723-3

Keywords

Mathematics Subject Classification

Navigation