Log in

Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6-xAlxO2 cathodes in an in situ Li2CO3 coating by a one-step method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cathodes must accommodate the excellent performance of the applied anodes in lithium batteries. Li-rich Mn-based cathode materials with a specific capacity beyond 250 mAh·g−1 are considered some of the most promising cathode materials, although they suffer from some unsolved problems. In this paper, a series of Li1.2Ni0.2Mn0.6-xAlxO2 cathodes with an in situ-synthesized Li2CO3 coating layer by a one-step method is utilized to enhance their electrochemical performance by inhibiting the transition from a layered structure to a spinel structure and reducing the generation of Mn3+. The Li1.2Ni0.2Mn0.56Al0.04O2@Li2CO3 coating sample exhibits an excellent capacity retention rate of 89.5% and a small voltage decay of 1.11 mV per cycle after 200 cycles at 1 C. Lithium-ion full cells composed of Li1.2Ni0.2Mn0.56Al0.04O2@Li2CO3 and graphite show an energy density of 443.7 Wh·kg−1 at 0.1 C, and the capacity retention rate is 95.6% after 200 cycles at 1 C. These results offer prospects for satisfying the high energy density requirements of electric equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hafiz H, Suzuki K, Barbiellini B, Tsuji N, Yabuuchi N, Yamamoto K, Orikasa Y, Uchimoto Y, Sakurai Y, Sakurai H, Bansil A, Viswanathan V (2021) Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature 594:213–216

    Article  CAS  Google Scholar 

  2. Sripad S, Viswanathan V (2017) Performance metrics required of next-generation batteries to make a practical electric semi truck. ACS Energy Lett 2:1669–1673

    Article  CAS  Google Scholar 

  3. Ye H, Li Y (2022) Towards practical lean-electrolyte Li–S batteries: highly solvating electrolytes or sparingly solvating electrolytes? Nano Research Energy 1:e9120012

    Article  Google Scholar 

  4. Liu Y, Li J, Shen Q, Zhang J, He P, Qu X, Liu Y (2022) Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience 2(1):10–31

    Article  Google Scholar 

  5. Jia H, Li X, Song J, Zhang X, Luo L, He Y, Li B, Cai Y, Hu S, **ao X, Wang C, Rosso KM, Yi R, Patel R, Zhang J-G (2020) Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat Commun 11:1174

    Article  Google Scholar 

  6. Chen D, Zhang W, Luo K, Song Y, Zhong Y, Liu Y, Wang G, Zhong B, Wu Z, Guo X (2021) Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy Environ Sci 14:2244–2262

    Article  CAS  Google Scholar 

  7. Wang H, Wang C, Tang Y (2021) Interface engineering toward high-efficiency alloy anode for next-generation energy storage device. EcoMat 3:e12172

    Article  CAS  Google Scholar 

  8. Yang Z, Chen T, Chen D, Shi X, Yang S, Zhong Y, Liu Y, Wang G, Zhong B, Song Y, Wu Z, Guo X (2021) A Ge/carbon atomic-scale hybrid anode material: a micro-nano gradient porous structure with high cycling stability. Angew Chem Int Ed Engl 60:12539–12546

    Article  CAS  Google Scholar 

  9. Yang J, Li P, Zhong F, Feng X, Chen W, Ai X, Yang H, **a D, Cao Y (2020) Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv Energy Mater 10:1904264

    Article  CAS  Google Scholar 

  10. Ding X, Luo D, Cui J, **e H, Ren Q, Lin Z (2020) An ultra-long-life lithium-rich Li1.2 Mn0.6 Ni0.2 O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew Chem Int Ed Engl 59:7778–7782

    Article  CAS  Google Scholar 

  11. Ye Z, Zhang B, Chen T, Wu Z, Wang D, **ang W, Sun Y, Liu Y, Liu Y, Zhang J, Song Y, Guo X (2021) A simple gas-solid treatment for surface modification of Li-rich oxides cathodes. Angew Chem Int Ed Engl 60:23248–23255

    Article  CAS  Google Scholar 

  12. Tang Q, Dai X, Wang Z, Wu F, Mai Y, Gu Y, Deng Y (2021) Enhanced high-voltage performance of LiCoO2 cathode by directly coating of the electrode with Li2CO3 via a wet chemical method. Ceram Int 47:19374–19383

    Article  CAS  Google Scholar 

  13. Chen Z-L, Gu Y-J, Luo G-Y, Huo Y-L, Wu F-Z (2022) Enhanced electrochemical performance of LiFePO4/C wrapped with sulfur-modified reduced graphene oxide for Li-ion batteries. Ionics 28:191–200

    Article  CAS  Google Scholar 

  14. Luo G-Y, Gu Y-J, Liu Y, Chen Z-L, Huo Y-l, Wu F-Z, Mai Y, Dai X-Y, Deng Y (2021) Electrochemical performance of in situ LiFePO4 modified by N-doped graphene for Li-ion batteries. Ceram Int 47:11332–11339

    Article  CAS  Google Scholar 

  15. Qiu B, Zhang M, Wu L, Wang J, **a Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS (2016) Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108

    Article  CAS  Google Scholar 

  16. Cheng XB, Liu H, Yuan H, Peng HJ, Tang C, Huang JQ, Zhang Q (2021) A perspective on sustainable energy materials for lithium batteries. SusMat 1:38–50

    Article  Google Scholar 

  17. Lei Y, Ni J, Hu Z, Wang Z, Gui F, Li B, Ming P, Zhang C, Elias Y, Aurbach D, **ao Q (2020) Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization. Adv Energy Mater 10:2002506

    Article  CAS  Google Scholar 

  18. He W, Guo W, Wu H, Lin L, Liu Q, Han X, **e Q, Liu P, Zheng H, Wang L, Yu X, Peng DL (2021) Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 33:2005937

    Article  CAS  Google Scholar 

  19. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Ma Y, Shen Y, Li X, Ren X, Sun C, Zhang G, Wu Z (2020) Enhanced Cathode Performance: Mixed Al2O3 and LiAlO2 Coating of Li1.2Ni0.13Co0.13Mn0.54O2. ACS Appl Mater Interfaces 12:38153–38162

    Article  CAS  Google Scholar 

  20. Zheng J, Gu M, **ao J, Polzin BJ, Yan P, Chen X, Wang C, Zhang J-G (2014) Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem Mater 26:6320–6327

    Article  CAS  Google Scholar 

  21. Yang S-q, Wang P-b, Wei H-x, Tang L-b, Zhang X-h, He Z-j, Li Y-j, Tong H, Zheng J-c (2019) Li4V2Mn(PO4)(4)-stablized Li Li0.2Mn0.54Ni0.13Co0.13 O2 cathode materials for lithium ion batteries. Nano Energy 63:103889.

  22. Zhang W, Liu Y, Wu J, Shao H, Yang Y (2019) Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with Al2O3/SiO2 composite for lithium-ion batteries. J Electrochem Soc 166:A863–A872

    Article  CAS  Google Scholar 

  23. Zhang P, Zhai X, Huang H, Zhou J, Li X, He Y, Guo Z (2020) Suppression of structural phase transformation of Li-rich Mn-based layered cathode materials with Na ion substitution strategy. Electrochim Acta 349:136402

    Article  CAS  Google Scholar 

  24. Xu H, Deng S, Chen G (2014) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg do** for lithium ion battery cathode material. J Mater Chem A 2:15015–15021

    Article  CAS  Google Scholar 

  25. Chen J, Wang Y, Zhao N, Liu Z-Q (2019) Hierarchical micro−nanostructured and Al3+−doped Li1.2Ni0.2Mn0.6O2 active materials with enhanced electrochemical properties as cathode materials for Li−ion batteries. Scripta Mater 171:47–51

    Article  CAS  Google Scholar 

  26. Wu F, Kim GT, Kuenzel M, Zhang H, Asenbauer J, Geiger D, Kaiser U, Passerini S (2019) Elucidating the effect of iron do** on the electrochemical performance of cobalt-free lithium-rich layered cathode materials. Adv Energy Mater 9:1902445

    Article  CAS  Google Scholar 

  27. Li L, Song BH, Chang YL, ** in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources 283:162–170

    Article  CAS  Google Scholar 

  28. **. Electrochim Acta 196:505–516

    Article  CAS  Google Scholar 

  29. Qiu L, Zhang M, Song Y, **ao Y, Wu Z, **ang W, Liu Y, Wang G, Sun Y, Zhang J, Zhang B, Guo X (2021) Recent advance in structure regulation of high-capacity Ni-rich layered oxide cathodes. EcoMat 3:e12141

    Article  CAS  Google Scholar 

  30. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al Do** for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6:1502398

    Article  Google Scholar 

  31. Yan W, **e Y, Jiang J, Sun D, Ma X, Lan Z, ** Y (2018) Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method. ACS Sustain Chem Eng 6:4625–4632

    Article  CAS  Google Scholar 

  32. Nayak PK, Penki TR, Markovsky B, Aurbach D (2017) Electrochemical performance of Li- and Mn-rich cathodes in full cells with prelithiated graphite negative electrodes. ACS Energy Lett 2:544–548

    Article  CAS  Google Scholar 

  33. Zhang C, Feng Y, Wei B, Liang C, Zhou L, Ivey DG, Wang P, Wei W (2020) Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy 75:104995

    Article  CAS  Google Scholar 

  34. Zhang M, Qiu L, Sun Y, Song Y, Wu Z, Liu Y, Yang Z, Liu Y, Zhang J, Zhong B, Guo X (2021) Microstructure-controlled Li-rich Mn-based cathodes by a gas-solid interface reaction for tackling the continuous activation of Li2MnO3. ACS Appl Mater Interfaces 13:40995–41003

    Article  Google Scholar 

  35. Wang D, Wu Z, **ang W, Liu Y, Wang G, Hu K, Xu Q, Song Y, Guo X (2022) Is it universal that the layered-spinel structure can improve electrochemical performance? J Energy Chem 64:344–353

    Article  CAS  Google Scholar 

  36. Wang T, Zhang C, Li S, Shen X, Zhou L, Huang Q, Liang C, Wang Z, Wang X, Wei W (2021) Regulating anion redox and cation migration to enhance the structural stability of Li-rich layered oxides. ACS Appl Mater Interfaces 13:12159–12168

    Article  CAS  Google Scholar 

  37. Li M, Wang H, Zhao L, Zhou Y, Zhang F, He D (2019) Improving the electrochemical performance of lithium-rich oxide layer material with Mg and La co-do**. J Alloys Compd 782:451–460

    Article  CAS  Google Scholar 

  38. Zheng J, Ye Y, Liu T, **ao Y, Wang C, Wang F, Pan F (2019) Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control. Acc Chem Res 52:2201–2209

    Article  CAS  Google Scholar 

  39. Li H, Jian Z, Yang P, Li J, ** of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance. Ceram Int 46:23773–23779

    Article  CAS  Google Scholar 

  40. Yi T-F, Mei J, Peng P-P, Luo S (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos B Eng 167:566–572

    Article  CAS  Google Scholar 

  41. Yi T-F, Qiu L-Y, Mei J, Qi S-Y, Cui P, Luo S, Zhu Y-R, **e Y, He Y-B (2020) Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Science Bulletin 65:546–556

    Article  CAS  Google Scholar 

  42. Yang P, Li H, Wei X, Zhang S, **ng Y (2018) Structure tuned Li1.2Mn0.6Ni0.2O2 with low cation mixing and Ni segregation as high performance cathode materials for Li-ion batteries. Electrochim Acta 271:276–283

    Article  CAS  Google Scholar 

  43. Wei T-T, Peng P, Ji Y-R, Zhu Y-R, Yi T-F, **e Y (2022) Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J Energy Chem 71:400–410

    Article  CAS  Google Scholar 

  44. Tf Yi, Shi L, Han X, Wang F, Zhu Y, **e Y (2020) Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2CeO2 nanosheets. Energy Environ Mater 4:586–595

    Google Scholar 

  45. Yin C, Zhou H, Yang Z, Li J (2018) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces 10:13625–13634

    Article  CAS  Google Scholar 

  46. Fu X, Xa Z, Zhao D, Liang Y, Wang P, Zhang N, Tuo K, Lu H, Cai X, Mao L, Li S (2021) Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials. Electrochim Acta 394:139136

    Article  CAS  Google Scholar 

  47. Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam K-W, **n HL, Jaye C, Fischer DA, Amine K, Yang X-Q (2018) Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat Energy 3:690–698

    Article  CAS  Google Scholar 

  48. Csernica PM, Kalirai SS, Gent WE, Lim K, Yu Y-S, Liu Y, Ahn S-J, Kaeli E, Xu X, Stone KH, Marshall AF, Sinclair R, Shapiro DA, Toney MF, Chueh WC (2021) Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat Energy 6:642–652

    Article  CAS  Google Scholar 

  49. Zhang P, Zhai X, Huang H, Zhou J, Li X, He Y, Guo Z (2020) Synergistic Na+ and F co-do** modification strategy to improve the electrochemical performance of Li-rich Li1·20Mn0·54Ni0·13Co0·13O2 cathode. Ceram Int 46:24723–24736

    Article  CAS  Google Scholar 

  50. Chen G, An J, Meng Y, Yuan C, Matthews B, Dou F, Shi L, Zhou Y, Song P, Wu G, Zhang D (2019) Cation and anion Co-do** synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy 57:157–165

    Article  CAS  Google Scholar 

  51. Xu Y, Zhang M, Yi L, Liang K (2021) Fe3+ and PO43- co-doped Li-rich Li1.20Mn0.56Ni0.16Co0.08O2 as cathode with outstanding structural stability for lithium-ion battery. J Alloys Compd 865:158899.

  52. Ma Q, Chen Z, Zhong S, Meng J, Lai F, Li Z, Cheng C, Zhang L, Liu T (2021) Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 81:105622

    Article  CAS  Google Scholar 

  53. Jiang W, Zhang C, Feng Y, Wei B, Chen L, Zhang R, Ivey DG, Wang P, Wei W (2020) Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation do**. Energy Storage Mater 32:37–45

    Article  Google Scholar 

  54. Tang W, Duan J, ** strategy for enhancing the structural stability of lithium-rich layered oxides. ACS Appl Mater Interfaces 13:16407–16417

    Article  CAS  Google Scholar 

  55. Sallard S, Billaud J, Sheptyakov D, Novak P, Villevieille C (2020) Cr-doped Li-rich nickel cobalt manganese oxide as a positive electrode material in Li-ion batteries to enhance cycling stability. Acs Appl Energy Mater 3:8646–8657

    Article  Google Scholar 

  56. Xu Z, Ci L, Yuan Y, Nie X, Li J, Cheng J, Sun Q, Zhang Y, Han G, Min G, Lu J (2020) Potassium Prussian blue-coated Li-rich cathode with enhanced lithium ion storage property. Nano Energy 75:104942

    Article  CAS  Google Scholar 

  57. Nayak PK, Grinblat J, Levi M, Haik O, Levi E, Aurbach D (2015) Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J Solid State Electr 19:2781–2792

    Article  CAS  Google Scholar 

  58. Liu S, Liu Z, Shen X, Li W, Gao Y, Banis MN, Li M, Chen K, Zhu L, Yu R, Wang Z, Sun X, Lu G, Kong Q, Bai X, Chen L (2018) Surface do** to enhance structural integrity and performance of Li-rich layered oxide. Adv Energy Mater 8:1802105

    Article  Google Scholar 

  59. Shi J-L, Zhang J-N, He M, Zhang X-D, Yin Y-X, Li H, Guo Y-G, Gu L, Wan L-J (2016) Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl Mater Interfaces 8:20138–20146

    Article  CAS  Google Scholar 

  60. Sim S-J, Lee S-H, ** B-S, Kim H-S (2021) Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries. J Power Sources 481:229037.

Download references

Funding

This work was financially supported by the Qian Ke He Ji Chu-ZK [2021]Yi Ban 236, the Guizhou Science and Technology Planning Project [2020]5021, the Potential Subject Project of Guizhou University GZUQLXK21006, the Guizhou High Level and Innovative Talents Projects [2022]009–1, and the Natural Science Research Project of Guizhou Provincial Department of Education [2022]041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-**g Gu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, YL., Gu, YJ., Chen, ZL. et al. Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6-xAlxO2 cathodes in an in situ Li2CO3 coating by a one-step method. Ionics 29, 71–85 (2023). https://doi.org/10.1007/s11581-022-04804-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04804-z

Keywords

Navigation