Log in

Boosting the mechanical strength and electrochemical performance of PEO/LiTFSI polymeric solid electrolyte via nylon nanofibers

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide) (PEO)-based polymeric solid electrolytes (PSEs) hold great promise for all-solid-state lithium batteries, but the intrinsic low mechanical strength of PEO limits their practical application and scale production. Herein, PSEs consisting of PEO and lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) supported on poly(hexamethylene adipamide) (nylon) nanofiber matrix (nylon@PEO/LiTFSI PSEs) are designed and prepared in situ on the Al, Cu foils, and the LiFePO4 electrodes through coaxially electrospinning at 45 °C. The nylon@PEO/LiTFSI PSEs show nonporous morphology due to in situ melting of the PEO/LiTFSI shell. The mechanical strength of the nylon@PEO/LiTFSI PSE can reach to 3.32 and 2.44 MPa at 25 and 60 °C, respectively, which is stronger than that of the pure PEO membrane or the PSEs prepared via conventional solution casting. The nylon@PEO/LiTFSI PSEs also show tight interfacial contact with LiFePO4 electrode, resulting in small charge transfer resistance of 376 Ω, and thus afford the LiFePO4 half coin cells with long charge/discharge cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang D, Zhu C, Fu Y, Sun X, Yang Y (2020) Adv Energy Mater 10:2001318

    Article  CAS  Google Scholar 

  2. Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X (2020) Energy Environ Sci 13:1429

    Article  CAS  Google Scholar 

  3. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Adv Mater 30:e1705702

    Article  PubMed  Google Scholar 

  4. Liu Y, Xu B, Zhang W, Li L, Lin Y, Nan C (2020) Small 16:e1902813

    Article  PubMed  Google Scholar 

  5. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Chen S, Yang J, Wang J, Yao L, Yao X, Cui P, Xu X (2018) ACS Appl Mater Interfaces 10:2556

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) J Power Sources 301:47

    Article  CAS  Google Scholar 

  8. Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS (2014) Electrochim Acta 146:395

    Article  CAS  Google Scholar 

  9. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C (2019) Nat Energy 4:187

    Article  CAS  Google Scholar 

  10. Sharafi A, Kazyak E, Davis AL, Yu S, Thompson T, Siegel DJ, Dasgupta NP, Sakamoto J (2017) Chem Mater 29:7961

    Article  CAS  Google Scholar 

  11. Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) J Power Sources 302:135

    Article  CAS  Google Scholar 

  12. Ma Q, Zhang H, Zhou C, Zheng L, Cheng P, Nie J, Feng W, Hu YS, Li H, Huang X, Chen L, Armand M, Zhou Z (2016) Angew Chem Int Ed Engl 55:2521

  13. Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F (2017) ACS Appl Mater Interfaces 9:13694

    Article  CAS  PubMed  Google Scholar 

  14. **isha B, Anilkumar K, Manoj M, Pradeep VS, Jayalekshmi S (2017) Electrochim Acta 235:210

  15. Judez X, Zhang H, Li C, Gonzalez-Marcos JA, Zhou Z, Armand M, Rodriguez-Martinez LM (2017) J Phys Chem Lett 8:1956

    Article  CAS  PubMed  Google Scholar 

  16. Xue Z, He D, **e X (2015) J Mater Chem A 3:19218

    Article  CAS  Google Scholar 

  17. Li D, Chen L, Wang T, Fan LZ (2018) ACS Appl Mater Interfaces 10:7069

    Article  CAS  PubMed  Google Scholar 

  18. Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L (2016) Proc Natl Acad Sci USA 113:7094

    Article  CAS  PubMed  Google Scholar 

  19. Wan J, **e J, Kong X, Liu Z, Liu K, Shi F, Pei A, Chen H, Chen W, Chen J, Zhang X, Zong L, Wang J, Chen LQ, Qin J, Cui Y (2019) Nat Nanotechnol 14:705

    Article  CAS  PubMed  Google Scholar 

  20. Homann G, Stolz L, Neuhaus K, Winter M, Kasnatscheew J (2020) Adv Funct Mater 30:2006289

    Article  CAS  Google Scholar 

  21. Raghavan P, Manuel J, Zhao X, Kim D-S, Ahn J-H, Nah C (2011) J Power Sources 196:6742

    Article  CAS  Google Scholar 

  22. Cheng Y, Zhang L, Xu S, Zhang H, Ren B, Li T, Zhang S (2018) J Mater Chem A 6:18479

    Article  CAS  Google Scholar 

  23. Zhao H, Kang W, Deng N, Liu M, Cheng B (2020) Chem Eng J 384:123312

    Article  CAS  Google Scholar 

  24. Liang X, Yang Y, ** X, Cheng J (2016) J Mater Sci Technol 32:200

    Article  CAS  Google Scholar 

  25. Gao L, Li J, Sarmad B, Cheng B, Kang W, Deng N (2020) Nanoscale 12:14279

    Article  CAS  PubMed  Google Scholar 

  26. Gao L, Li J, Ju J, Wang L, Yan J, Cheng B, Kang W, Deng N, Li Y (2020) Chem Eng J 389:124478

    Article  CAS  Google Scholar 

  27. Jung J-W, Lee C-L, Yu S, Kim I-D (2016) J Mater Chem A 4:703

    Article  CAS  Google Scholar 

  28. Freitag KM, Kirchhain H, Wullen LV, Nilges T (2017) Inorg Chem 56:2100

    Article  CAS  PubMed  Google Scholar 

  29. Walke P, Freitag KM, Kirchhain H, Kaiser M, van Wüllen L, Nilges T, Anorg Z (2018) Allg Chem 644:1863

    Article  CAS  Google Scholar 

  30. Mohammadi SZ, Safari Z, Madady N (2020) Appl Surf Sci 514:145873

    Article  CAS  Google Scholar 

  31. Kim K, Hallinan DT Jr (2020) J Phys Chem B 124:2040

    Article  CAS  PubMed  Google Scholar 

  32. Zeng F, Sun Y, Hui B, **a Y, Zou Y, Zhang X, Yang D (2020) ACS Appl Mater Interfaces 12:43805

    Article  CAS  PubMed  Google Scholar 

  33. Freitag KM, Walke P, Nilges T, Kirchhain H, Spranger RJ, van Wüllen L (2018) J Power Sources 378:610

    Article  CAS  Google Scholar 

  34. Wang H, Wang Q, Cao X, He Y, Wu K, Yang J, Zhou H, Liu W, Sun X (2020) Adv Mater 32:e2001259

    Article  PubMed  Google Scholar 

  35. Cattaneo AS, Dall’Asta V, Pontiroli D, Riccò M, Magnani G, Milanese C, Tealdi C, Quatarone E, Mustarelli P (2016) Carbon 100:196

  36. Yang Z, Sun Z, Liu C, Li Y, Zhou G, Zuo S, Wang J, Wu W (2021) J Power Sources 484:229287

    Article  CAS  Google Scholar 

  37. Caradant L, Lepage D, Nicolle P, Prébé A, Aymé-Perrot D, Dollé M (2020) ACS Appl Polym Mater 2:4943

    Article  CAS  Google Scholar 

  38. Xu S, Sun Z, Sun C, Li F, Chen K, Zhang Z, Hou G, Cheng HM, Li F (2020) Adv Funct Mater 30:2007172

    Article  CAS  Google Scholar 

  39. Liu C, Wang J, Kou W, Yang Z, Zhai P, Liu Y, Wu W, Wang J (2021) Chem Eng J 404:126517

    Article  CAS  Google Scholar 

  40. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456

    Article  CAS  Google Scholar 

  41. Yu D, Pan X,Bostwick JE, Zanelotti CJ, Mu L, Colby RH, Lin F, Madsen LA (2021) Adv Energy Mater 11:2003559

  42. Lee J-Y, Yu T-Y, Chung P-H, Lee W-Y, Yeh S-C, Wu N-L, Jeng R-J (2021) ACS Appl Energ Mater 4:2663

    Article  CAS  Google Scholar 

  43. Sun C-C, Yusuf A, Li S-W, Qi X-L, Ma Y, Wang D-Y (2021) Chem Eng J 414:128702

    Article  CAS  Google Scholar 

  44. Ao X, Wang X, Tan J, Zhang S, Su C, Dong L, Tang M, Wang Z, Tian B, Wang H (2021) Nano Energy 79:105475

    Article  CAS  Google Scholar 

  45. Lei Z, Shen J, Zhang W, Wang Q, Wang J, Deng Y, Wang C (2020) Nano Res 13:2259

    Article  CAS  Google Scholar 

  46. Wang G, Zhu X, Rashid A, Hu Z, Sun P, Zhang Q, Zhang L (2020) J Mater Chem A 8:13351

    Article  CAS  Google Scholar 

  47. Han Q, Wang S, Jiang Z, Hu X, Wang H (2020) ACS Appl Mater Interfaces 12:20514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the kind help from Instrument Analysis Center of Shanghai Jiao Tong University.

Funding

The study was financially supported by Shaanxi Yulin Energy Group Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwu Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10.2 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yan, J., Shen, W. et al. Boosting the mechanical strength and electrochemical performance of PEO/LiTFSI polymeric solid electrolyte via nylon nanofibers. Ionics 28, 5341–5350 (2022). https://doi.org/10.1007/s11581-022-04740-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04740-y

Keywords

Navigation