Log in

Synergistic improvement in electron transport and active sites exposure over RGO supported NiP/Fe4P for oxygen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochemical water splitting is essential for enabling the storage of renewable electricity through the chemical bonds of hydrogen, while the efficiency of water splitting is low because of the sluggish kinetics of oxygen evolution reaction (OER) in the anode. Herein, we demonstrate that the electrocatalytic water splitting efficiency could be significantly improved by constructing 2D reduced graphene oxide (RGO) supported NiP/Fe4P nanosheets as OER electrocatalysts through a facile wet chemical and subsequent in situ phosphating method. Impressively, using NiP/Fe4P/RGO composites, which are prone to displaying largely exposed surface active area and remarkably improved electrical conductivity to boost the electron transfer. As a consequence, the electrochemical measurements reveal that the NiP/Fe4P/RGO composites could enable water oxidation at an overpotential of 268 mV with a nominal current density of 10 mA cm−2, along with outstanding long-term electrochemical stability. This work presents an advanced electrocatalyst with both high electrocatalytic OER activity and durability, which will allow us to produce hydrogen at low voltages in scale-up potential with the assistance of cost-effective electrocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu H, Shang H, Wang C, Du Y (2020) Ultrafine Pt-based nanowires for advanced catalysis. Adv Funct Mater 30:2000793

    Article  CAS  Google Scholar 

  2. Xu H, Shang H, Wang C, Du Y (2020) Low-dimensional metallic nanomaterials for advanced electrocatalysis. Adv Funct Mater 30:2006317

    Article  CAS  Google Scholar 

  3. Zhao M, **a Y (2020) Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat Rev Mater 5:440–459

    Article  CAS  Google Scholar 

  4. Luo Y, Tang L, Khan U, Yu Q, Cheng HM, Zou X et al (2019) Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun 10:269

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feng G, An L, Li B, Zuo Y, Song J, Ning F et al (2019) Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nat Commun 10:4514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bao Y, Feng L Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys -Chim Sin. https://doi.org/10.3866/PKU.WHXB202008031

  7. Li D, Liu H, Feng L (2020) A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuel 34:13491–13522

    Article  CAS  Google Scholar 

  8. Yang L, Liu Z, Zhu S, Feng L, **ng W (2021) Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater Today Phys 16:100292

    Article  CAS  Google Scholar 

  9. Stoerzinger KA, Favaro M, Ross PN, Yano J, Liu Z, Hussain Z et al (2018) Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J Phys Chem B 122:864–870

    Article  PubMed  Google Scholar 

  10. Tiwari JN, Sultan S, Myung CW, Yoon T, Li N, Ha M et al (2018) Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat Energy 3:773–782

    Article  CAS  Google Scholar 

  11. Hegde C, Sun X, Dinh KN, Huang A, Ren H, Li B et al (2020) Cu- and Fe-codoped Ni porous networks as an active electrocatalyst for hydrogen evolution in alkaline medium. ACS Appl Mater Interfaces 12:2380–2389

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Sun Y, Qin Y, Zhang W, Wang L, Luo M et al (2020) Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv Energy Mater 10:1903120

    Article  CAS  Google Scholar 

  13. Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim TH et al (2020) Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett 20:136–144

    Article  CAS  PubMed  Google Scholar 

  14. Xu H, Zhao Y, Wang Q, He G, Chen H (2022) Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 451:214261

    Article  CAS  Google Scholar 

  15. Sarno M, Ponticorvo E, Scarpa D (2020) Active and stable graphene supporting trimetallic alloy-based electrocatalyst for hydrogen evolution by seawater splitting. Electrochem Commun 111:106647

    Article  CAS  Google Scholar 

  16. Chen D, Lu R, Pu Z, Zhu J, Li H-W, Liu F et al (2020) Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl Catal B Environ 279:119396

    Article  CAS  Google Scholar 

  17. Hu P, Jia Z, Che H, Zhou W, Liu N, Li F et al (2019) Engineering hybrid CoMoS4/Ni3S2 nanostructures as efficient bifunctional electrocatalyst for overall water splitting. J Power Sources 416:95–103

    Article  CAS  Google Scholar 

  18. Xu Q, Jiang H, Zhang H, Hu Y, Li C (2019) Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B Environ 242:60–66

    Article  CAS  Google Scholar 

  19. Liu Y, Jiang S, Li S, Zhou L, Li Z, Li J et al (2019) Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl Catal B Environ 247:107–114

    Article  CAS  Google Scholar 

  20. Kuang P, He M, Zou H, Yu J, Fan K (2019) 0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting. Appl Catal B Environ 254:15–25

    Article  CAS  Google Scholar 

  21. Li A, Ooka H, Bonnet N, Hayashi T, Sun Y, Jiang Q et al (2019) Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew Chem Int Ed 58:5054–5058

    Article  CAS  Google Scholar 

  22. Wang B, Tang C, Wang HF, Chen X, Cao R, Zhang Q (2019) A nanosized CoNi hydroxide@hydroxysulfide core-shell heterostructure for enhanced oxygen evolution. Adv Mater 31:1805658

    Article  Google Scholar 

  23. Begum H, Ahmed MS, Jeon S (2019) δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction. Electrochim Acta 296:235–242

    Article  CAS  Google Scholar 

  24. Xu N, Nie Q, Luo L, Yao C, Gong Q, Liu Y et al (2019) Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries. ACS Appl Mater Interfaces 11:578–587

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, **ao B, Lin Z, Shen S, Xu A, Du Z et al (2021) In-situ surface decoration of RuO2 nanoparticles by laser ablation for improved oxygen evolution reaction activity in both acid and alkali solutions. J Energy Chem 54:510–518

    Article  Google Scholar 

  26. Cui X, Ren P, Ma C, Zhao J, Chen R, Chen S et al (2020) Robust interface Ru centers for high-performance acidic oxygen evolution. Adv Mater 32:e1908126

    Article  PubMed  Google Scholar 

  27. Yao Q, Huang B, Zhang N, Sun M, Shao Q, Huang X (2019) Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew Chem Int Ed 58:13983–13988

    Article  CAS  Google Scholar 

  28. Hu Y, Luo X, Wu G, Chao T, Li Z, Qu Y et al (2019) Engineering the atomic layer of RuO2 on PdO nanosheets boosts oxygen evolution catalysis. ACS Appl Mater Interfaces 11:42298–42304

    Article  CAS  PubMed  Google Scholar 

  29. Tian L, Li Z, Wang P, Zhai X, Wang X, Li T (2021) Carbon quantum dots for advanced electrocatalysis. J Energy Chem 55:279–294

    Article  Google Scholar 

  30. Tian L, Qiu G, Shen Y, Wang X, Wang J, Wang P et al (2019) Carbon quantum dots modulated NiMoP hollow nanopetals as efficient electrocatalysts for hydrogen evolution. Ind Eng Chem Res 58:14098–14105

    Article  CAS  Google Scholar 

  31. Tian L, Wang J, Wang K, Wo H, Wang X, Zhuang W et al (2019) Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media. Carbon. 143:457–466

    Article  CAS  Google Scholar 

  32. Tian L, Zhai X, Wang X, Pang X, Li J, Li Z (2020) Morphology and phase transformation of α-MnO2/MnOOH modulated by N-CDs for efficient electrocatalytic oxygen evolution reaction in alkaline medium. Electrochim Acta 337:135823

    Article  CAS  Google Scholar 

  33. Xu H, Shang H, Wang C, ** L, Chen C, Wang C et al (2020) Three-dimensional open CoMoOx/CoMoSx/CoSx nanobox electrocatalysts for efficient oxygen evolution reaction. Appl Catal B Environ 265:118605

    Article  CAS  Google Scholar 

  34. Xu H, Shang H, Di J, Du Y (2019) Geometric and electronic engineering of Mn-doped Cu(OH)2 hexagonal nanorings for superior oxygen evolution reaction electrocatalysis. Inorg Chem 58:15433–15442

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Feng H, Song M, He C, Zhuang W, Tian L (2021) Advances in CoP electrocatalysts for water splitting. Mater Today Energy 20:100698

    Article  CAS  Google Scholar 

  36. Tian L, Zhai X, Wang X, Li J, Li Z (2020) Advances in manganese-based oxides for oxygen evolution reaction. J Mater Chem A 8:14400–14414

    Article  CAS  Google Scholar 

  37. Xu H, Shang H, Wang C, Du Y (2020) Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev 418:213374

    Article  CAS  Google Scholar 

  38. Xu H, Shang H, ** L, Chen C, Wang C, Du Y (2019) Boosting electrocatalytic oxygen evolution over Prussian blue analog/transition metal dichalcogenide nanoboxes by photo-induced electron transfer. J Mater Chem A 7:26905–26910

    Article  CAS  Google Scholar 

  39. Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L (2021) MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 439:213946

    Article  CAS  Google Scholar 

  40. Wu S, Liu J, Liang D, Sun H, Ye Y, Tian Z et al (2016) Photo-excited in situ loading of Pt clusters onto rGO immobilized SnO2 with excellent catalytic performance toward methanol oxidation. Nano Energy 26:699–707

    Article  CAS  Google Scholar 

  41. Kannan R, Kim AR, Nahm KS, Lee HK, Yoo DJ (2014) Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell. Chem Commun 50:14623–14626

    Article  CAS  Google Scholar 

  42. Cao E, Chen Z, Wu H, Yu P, Wang Y, **ao F et al (2020) Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew Chem Int Ed 59:4154–4160

    Article  CAS  Google Scholar 

  43. Wang X, Fei Y, Li W, Yi L, Feng B, Pan Y et al (2020) Gold-incorporated cobalt phosphide nanoparticles on nitrogen-doped carbon for enhanced hydrogen evolution electrocatalysis. ACS Appl Mater Interfaces 12:16548–16556

    Article  CAS  PubMed  Google Scholar 

  44. Yan L, Cao L, Dai P, Gu X, Liu D, Li L et al (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455

    Article  Google Scholar 

  45. Saadi FH, Carim AI, Drisdell WS, Gul S, Baricuatro JH, Yano J et al (2017) Operando spectroscopic analysis of CoP films electrocatalyzing the hydrogen-evolution reaction. J Am Chem Soc 139:12927–12930

    Article  CAS  PubMed  Google Scholar 

  46. Zhang G, Wang G, Liu Y, Liu H, Qu J, Li J (2016) Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J Am Chem Soc 138:14686–14693

    Article  CAS  PubMed  Google Scholar 

  47. Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlogl U, Alshareef HN (2016) Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett 16:7718–7725

    Article  CAS  PubMed  Google Scholar 

  48. Mendoza-Garcia A, Zhu H, Yu Y, Li Q, Zhou L, Su D et al (2015) Controlled anisotropic growth of Co-Fe-P from Co-Fe-O nanoparticles. Angew Chem 54:9642–9645

    Article  CAS  Google Scholar 

  49. Li P, Zeng HC (2017) Advanced oxygen evolution catalysis by bimetallic Ni-Fe phosphide nanoparticles encapsulated in nitrogen, phosphorus, and sulphur tri-doped porous carbon. Chem Commun 53:6025–6028

    Article  CAS  Google Scholar 

  50. Wang W, Liu Y, Li J, Luo J, Fu L, Chen S (2018) NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. J Mater Chem A 6:14299–14306

    Article  CAS  Google Scholar 

  51. Zhong H, Liu T, Zhang S, Li D, Tang P, Alonso-Vante N et al (2019) Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performance in alkaline media. J Energy Chem 33:130–137

    Article  Google Scholar 

  52. Liu B, Cao B, Cheng Y, **g P, Zhao J, Gao R et al (2020) Ultrafine CoP/Co2P nanorods encapsulated in janus/twins-type honeycomb 3D nitrogen-doped carbon nanosheets for efficient hydrogen evolution. iScience 23:101264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim H, Kim J, Ahn SH (2019) Monitoring oxygen-vacancy ratio in NiFe-based electrocatalysts during oxygen evolution reaction in alkaline electrolyte. J Ind Eng Chem 72:273–280

    Article  CAS  Google Scholar 

  54. Liang H, Gandi AN, **a C, Hedhili MN, Anjum DH, Schwingenschlögl U et al (2017) Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett 2:1035–1042

    Article  CAS  Google Scholar 

  55. Kumar P, Murthy AP, Bezerra LS, Martini BK, Maia G, Madhavan J (2021) Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions. Int J Hydrog Energy 46:622–632

    Article  CAS  Google Scholar 

  56. Li BQ, Zhang SY, Tang C, Cui X, Zhang Q (2017) Anionic regulated NiFe (Oxy)sulfide electrocatalysts for water oxidation. Small. 13:1700610

    Article  Google Scholar 

Download references

Funding

This work was financed by Xuzhou science and technology plan project of China (KC21294), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB150019), Youth Science and Technology Talents Enrollment Project of the Jiangsu Association of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, W., Li, Z., Song, M. et al. Synergistic improvement in electron transport and active sites exposure over RGO supported NiP/Fe4P for oxygen evolution reaction. Ionics 28, 1359–1366 (2022). https://doi.org/10.1007/s11581-021-04396-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04396-0

Keywords

Navigation