Log in

Ni2CoS4 nanocubes anchored on nitrogen-doped ultra-thin hollow carbon spheres to achieve high-performance supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Metal sulfides, such as NiCo-sulfides, have attracted tremendous attention from the view of high conductivities and electrochemical activities. However, their structure degradation during the redox process causes cycling instability, which results in the limitation of the application of metal sulfides. Herein, we study the combination of metal sulfides with carbonaceous materials. The NHCS/Ni2CoS4 composite is synthesized via a facile two-step method that entails first the fabrication of the N-doped hollow carbon spheres (NHCS) followed by the loading of Ni2CoS4 nanocubes into the NHCS via hydrothermal synthesis. The as-obtained NHCS/Ni2CoS4 composite electrode shows a super electrochemical performance (1465 F g−1 at 0.5 A g−1) and has a satisfactory cycling stability (87.4% capacitance retention). These results indicate that NHCS/Ni2CoS4 is a promising electrode material for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang G, Zhang L, Zhang J (2011) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Song Y, **a Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950. https://doi.org/10.1039/c5cs00580a

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen T, Montemor MdF (2019) Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv Sci 6(9):1801797. https://doi.org/10.1002/advs.201801797

    Article  CAS  Google Scholar 

  4. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  5. Zhai T, Wan L, Sun S, Chen Q, Sun J, **a Q, **a H (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29(7):1604167. https://doi.org/10.1002/adma.201604167

    Article  CAS  Google Scholar 

  6. Ouyang T, Cheng K, Yang F, Zhou L, Zhu K, Ye K, Wang G, Cao D (2017) From biomass with irregular structures to 1D carbon nanobelts: a strip** and cutting strategy to fabricate high performance supercapacitor materials. J Mater Chem A 5(28):14551–14561. https://doi.org/10.1039/c7ta02412f

    Article  CAS  Google Scholar 

  7. Saddique J, Cheng X, Shi H, Wu R, Zhang Y (2019) High-performance Ni-Co sulfide nanosheet-nanotubes grown on Ni foam as a binder free electrode for supercapacitors. Appl Sci 9:3082. https://doi.org/10.3390/app9153082

    Article  CAS  Google Scholar 

  8. **ao J, Wan L, Yang S, **ao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14(2):831–838. https://doi.org/10.1021/nl404199v

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Jiang J, Zhang L, **a D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257. https://doi.org/10.1016/j.jpowsour.2013.12.092

    Article  CAS  Google Scholar 

  10. Zhang P, Guan BY, Yu L, Lou XW (2017) Formation of double-shelled zinc-cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew Chem Int Ed 56(25):7141–7145. https://doi.org/10.1002/anie.201702649

    Article  CAS  Google Scholar 

  11. Li Y, Ye K, Cheng K, Yin J, Cao D, Wang G (2015) Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. J Power Sources 274:943–950. https://doi.org/10.1016/j.jpowsour.2014.10.156

    Article  CAS  Google Scholar 

  12. He W, Wang C, Li H, Deng X, Xu X, Zhai T (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater 7(21):1700983. https://doi.org/10.1002/aenm.201700983

    Article  CAS  Google Scholar 

  13. Li X, Li Q, Wu Y, Rui M, Zeng H (2015) Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7(34):19316–19323. https://doi.org/10.1021/acsami.5b05400

    Article  CAS  PubMed  Google Scholar 

  14. Guan BY, Yu L, Wang X, Song S, Lou XW (2017) Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater 29(6):1605051. https://doi.org/10.1002/adma.201605051

    Article  CAS  Google Scholar 

  15. **ng Z, Chu Q, Ren X, Tian J, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem Commun 32:9–13. https://doi.org/10.1016/j.elecom.2013.03.033

    Article  CAS  Google Scholar 

  16. Sahoo S, Krishnamoorthy K, Pazhamalai P, Mariappan VK, Kim SJ (2018) Copper molybdenum sulfide: a novel pseudocapacitive electrode material for electrochemical energy storage device. Int J Hydrogen Energy 43(27):12222–12232. https://doi.org/10.1016/j.ijhydene.2018.04.143

    Article  CAS  Google Scholar 

  17. Zhang Q, Sun Y, Liu W, Qin Z, Gao J, Gao Y, Wang W (2019) Preparation and electrochemical properties of nickel–manganese composite sulfide. Ionics 25(10):4969–4979. https://doi.org/10.1007/s11581-019-03055-9

    Article  CAS  Google Scholar 

  18. **ng W, Li X, Cai T, Zhang Y, Bai P, Xu J, Hu H, Wu M, Xue Q, Zhao Y, Zhou J, Zhuo S, Gao X, Yan Z (2020) Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries. Electrochim Acta 344:136174. https://doi.org/10.1016/j.electacta.2020.136174

    Article  CAS  Google Scholar 

  19. Zhang C, Cai X, Qian Y, Jiang H, Zhou L, Li B, Lai L, Shen Z, Huang W (2018) Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv Sci 5(2):1700375. https://doi.org/10.1002/advs.201700375

    Article  CAS  Google Scholar 

  20. Yang C, Wang X, Liu G, Yu W, Dong X, **xian W (2019) One-step hydrothermal synthesis of Ni-Co sulfide on Ni foam as a binder-free electrode for lithium-sulfur batteries. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.12.112

    Article  PubMed  Google Scholar 

  21. Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49(86):10178–10180. https://doi.org/10.1039/c3cc46034g

    Article  CAS  Google Scholar 

  22. Cao X, He J, Li H, Kang L, He X, Sun J, Jiang R, Xu H, Lei Z, Liu Z-H (2018) CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small 14(27):1800998. https://doi.org/10.1002/smll.201800998

    Article  CAS  Google Scholar 

  23. Wu J, Shi X, Song W, Ren H, Tan C, Tang S, Meng X (2018) Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors. Nano Energy 45:439–447. https://doi.org/10.1016/j.nanoen.2018.01.024

    Article  CAS  Google Scholar 

  24. Huang Z-F, Song J, Li K, Tahir M, Wang Y-T, Pan L, Wang L, Zhang X, Zou J-J (2016) Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J Am Chem Soc 138(4):1359–1365. https://doi.org/10.1021/jacs.5b11986

    Article  CAS  PubMed  Google Scholar 

  25. Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv. https://doi.org/10.1126/sciadv.aap9252

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang Q, Liu Y, Yan M, Lei Y, Shi W (2019) MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. Chem Eng J 370:666–676. https://doi.org/10.1016/j.cej.2019.03.239

    Article  CAS  Google Scholar 

  27. Sheng K, Yi Q, Hou L, Chen A (2020) Metal-free graphene modified nitrogen-doped ultra-thin hollow carbon spheres as superior cathodic catalysts of Zn-air battery. J Electrochem Soc 167(7):070560. https://doi.org/10.1149/1945-7111/ab8646

    Article  Google Scholar 

  28. Mohammad Haniff MAS, Zainal Ariffin NH, Hafiz SM, Ooi PC, Syono MI, Hashim AM (2019) Wafer-scale fabrication of nitrogen-doped reduced graphene oxide with enhanced quaternary-N for high-performance photodetection. ACS Appl Mater Interfaces 11(4):4625–4636. https://doi.org/10.1021/acsami.8b19043

    Article  CAS  PubMed  Google Scholar 

  29. Hu X, Lin Z (2021) Transforming waste polypropylene face masks into S-doped porous carbon as the cathode electrode for supercapacitors. Ionics. https://doi.org/10.1007/s11581-021-03949-7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175. https://doi.org/10.1016/j.nanoen.2015.10.038

    Article  CAS  Google Scholar 

  31. Lin T, Chen IW, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267):1508. https://doi.org/10.1126/science.aab3798

    Article  CAS  PubMed  Google Scholar 

  32. Sivanantham A, Ganesan P, Shanmugam S (2016) Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Funct Mater 26(26):4661–4672. https://doi.org/10.1002/adfm.201600566

    Article  CAS  Google Scholar 

  33. Wu F, Guo X, Hao G, Hu Y, Jiang W (2019) Self-supported hollow Co(OH)2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting. J Solid State Electrochem 23(9):2627–2637. https://doi.org/10.1007/s10008-019-04362-x

    Article  CAS  Google Scholar 

  34. Tiruneh SN, Kang BK, Kwag SH, Lee Y, Kim M, Yoon DH (2018) Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem A Eur J 24(13):3263–3270. https://doi.org/10.1002/chem.201705445

    Article  CAS  Google Scholar 

  35. Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) ChemInform abstract: direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemInform. https://doi.org/10.1002/chin.201427007

    Article  Google Scholar 

  36. **ng W, Li X, Cai T, Zhang Y, Peng B, Xu J, Hu H, Wu M, Xue Q, Zhao Y, Zhou J, Zhuo S, Gao X, Yan Z (2020) Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries. Electrochim Acta 344:136174. https://doi.org/10.1016/j.electacta.2020.136174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of this research by Scientific Research Fund of Hunan Provincial Education Department (Nos. 19C0765 and 19C0764), National Natural Science Foundation of China (21875062) and the Research and Development Planning Projects in Key Areas of Hunan Province (No. 2019GK2034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Ouyang or Qingfeng Yi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ouyang, T., **ang, K. et al. Ni2CoS4 nanocubes anchored on nitrogen-doped ultra-thin hollow carbon spheres to achieve high-performance supercapacitor. Ionics 28, 415–422 (2022). https://doi.org/10.1007/s11581-021-04288-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04288-3

Keywords

Navigation