Log in

Surface modification of carbon materials by nitrogen/phosphorus co-do** as well as redox additive of ferrous ion for cooperatively boosting the performance of supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate a cooperative strategy of surface modification of carbon materials by N/P co-do** and redox additive of Fe2+ ion for boosting the performance of supercapacitors. Using NH4HCO3 or NH4H2PO4 as N/P dopants, the modified carbon materials have increased concerning the electrical conductivity, porosity, and N/P contents. Furthermore, Fe2+ ion serving as redox additive has been incorporated. In a three-electrode configuration, the C-N-P-Fe sample exhibits capacitance of 371 F g−1, which is 2.38 times larger than the C-Blank-Fe sample; the redox process of Fe2+ ions is controlled by the diffusion. In a two-electrode configuration, the C-N-P-Fe sample delivers energy density of 7.7 Wh kg−1, almost 2.33 times higher than the C-Blank-Fe sample. Moreover, it unveils that the pseudo-capacitance contribution has been improved with increasing N/P do** by Trasatti method; the redox process of Fe2+ ions predominantly happens on negative electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.  6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  2. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  PubMed  Google Scholar 

  3. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  PubMed  Google Scholar 

  4. Paraknowitsch JP, Thomas A (2013) Do** carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855

    Article  CAS  Google Scholar 

  5. Yang M, Zhou Z (2017) Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv Sci:1600408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhong M, Liu H, Wang M, Zhu YW, Chen XY, Zhang ZJ (2019) Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin. J Power Sources 438:226982

    Article  CAS  Google Scholar 

  7. Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013

    Article  CAS  Google Scholar 

  8. Lin Q, Zhang J, Lv W, Ma J, He Y, Kang F, Yang Q (2019) A functionalized carbon surface for high-performance sodium-ion storage semall 1902603

  9. Kale VS, Hwang M, Chang H, Kang J, Chae S, Jeon Y, Yang J, Kim J, Ko Y, Piao Y, Hyeon T (2018) Microporosity-controlled synthesis of heteroatom codoped carbon nanocages by wrap-bake-sublime approach for flexible all-solid-state-supercapacitors. Adv Funct Mater:1803786

    Article  CAS  Google Scholar 

  10. ** H, Feng X, Li J, Li M, **a Y, Yuan Y, Yang C, Dai B, Lin Z, Wang J, Lu J, Wang S (2019) Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew Chem Int Ed 58:1–6

    Article  Google Scholar 

  11. Nazarian-Samani M, Haghighat-Shishavan S, Nazarian-Samani M, Kim M, Cho B, Oh S, Kashani-Bozorg S, Kim K (2017) Rational hybrid modulation of P, N dual-doped holey graphene for high performance supercapacitors. J Power Sources 372:286–296

    Article  CAS  Google Scholar 

  12. Akinwolemiwa B, Peng C, Chen Z (2015) Redox electrolytes in supercapacitors. J Electrochem Soc 162:A5054–A5059

    Article  CAS  Google Scholar 

  13. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251

    Article  PubMed  CAS  Google Scholar 

  14. Senthilkumar ST, Kalai Selvan R, Melob JS (2013) Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A 1:12386–12394

    Article  CAS  Google Scholar 

  15. Lee J, Srimuk P, Fleischmann S, Su X, Hatton T, Presser V (2019) Redox-electrolytes for non-flow electrochemical energy storage: a critical review and best practice. Prog Mater Sci 101:46–89

    Article  CAS  Google Scholar 

  16. Mai L, Minhas-Khan A, Tian X, Hercule K, Zhao Y, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923

    Article  PubMed  CAS  Google Scholar 

  17. Jayaramulu K, Dubal DP, Nagar B, Ranc V, Tomanec O, Petr M, Datta KKR, Zboril R, Gómez-Romero P, Fischer RA (2018) Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv Mater:1705789

    Article  CAS  Google Scholar 

  18. Nie Y, Wang Q, Chen XY, Zhang ZJ (2016) Nitrogen and oxygen functionalized hollow carbon materials: the capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte. J Power Sources 320:140–152

    Article  CAS  Google Scholar 

  19. Wang C, Zhou Y, Sun L, Wan P, Zhang X, Qiu J (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88

    Article  CAS  Google Scholar 

  20. Ismagilov ZR, Shalagina AE, Podyacheva OY, Ischenko AV, Kibis LS, Boronin AI, Chesalov YA, Kochubey DI, Romanenko AI, Anikeeva OB, Buryakov TI, Tkachev EN (2009) Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 47:1922–1929

    Article  CAS  Google Scholar 

  21. Cruz-Silva E, Lopez-Urias F, Munoz-Sandoval E, Sumpter BG, Terrones H, Charlier J, Meunier V, Terrones M (2009) Electronic transport and mechanical properties of phosphorus- and phosphorus nitrogen-doped carbon nanotubes. ACS Nano 3:1913–1921

    Article  CAS  PubMed  Google Scholar 

  22. Jiang H, Lee P, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53

    Article  CAS  Google Scholar 

  23. Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90

    Article  CAS  Google Scholar 

  24. Hu W, Sun X, Xu D, **ao Z, Chen X (2017) Microporous carbon materials by hydrogen treatment: the balance of porosity and graphitization upon the capacitive performance. Ind Eng Chem Res 56:7253–7259

    Article  CAS  Google Scholar 

  25. Ma W, ** on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochim Acta 266:420–430

    Article  CAS  Google Scholar 

  26. Chen XY, Chen C, Zhang Z, **e D, Deng X, Liu J (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58

    Article  CAS  Google Scholar 

  27. Wang H, Yang G, Chen Z, Liu J, Fan X, Liang P, Huang Y, Lin J, Shen Z (2019) Nitrogen configuration dependent holey active sites toward enhanced K+ storage in graphite foam. J Power Sources 419:82–90

    Article  CAS  Google Scholar 

  28. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev 61:14095–14107

    Article  CAS  Google Scholar 

  29. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742

    Article  CAS  Google Scholar 

  30. Chu P, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96:253–277

    Article  CAS  Google Scholar 

  31. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  32. Wang DW, Li F, Yin LC, Lu X, Chen ZG, Gentle IR, Lu GQ, Cheng HM (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18:5345–5351

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Zheng X, ** C, Tian J, Yang R (2015) Ternary do** of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 92:327–338

    Article  CAS  Google Scholar 

  34. Ma X, Ning G, Qi C, Xu C, Gao J (2014) Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:14415–14422

    Article  CAS  PubMed  Google Scholar 

  35. Ren L, Zhang G, Yan Z, Kang L, Xu H, Shi F, Lei Z, Liu Z (2017) High capacitive property for supercapacitor using Fe3+/Fe2+ redox couple additive electrolyte. Electrochim Acta 231:705–712

    Article  CAS  Google Scholar 

  36. Chun S, Evanko B, Wang X, Vonlanthen D, Ji X, Stucky G, Boettcher S (2015) Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat Commun 6:7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Augustyn V, Simon P, Dunn B (2014) Pseudo-capacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  38. Sun X, Hu W, Xu D, Chen X, Cui P (2017) Integration of redox additive in H2SO4 solution and the adjustment of potential windows for improving the capacitive performances of supercapacitors. Ind Eng Chem Res 56:2433–2443

    Article  CAS  Google Scholar 

  39. Stoller M, Park S, Zhu Y, An J, Ruoff R (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  PubMed  Google Scholar 

  40. Jiao C, Zhang Z, Chen X (2019) Nitrogen and fluorine dual-doped carbon nanosheets for high-performance supercapacitors. Nano 14:1950042

    Article  CAS  Google Scholar 

  41. Zhang Z, Zheng Q, Sun L, Xu D, Chen X (2017) Two-dimensional carbon nanosheets for high-performance supercapacitors: large-scale synthesis and co-do** with nitrogen and phosphorus. Ind Eng Chem Res 56:12344–12353

    Article  CAS  Google Scholar 

  42. Zhang Z, Zhu Y, Chen X, Cao Y (2015) Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine. Electrochim Acta 176:941–948

    Article  CAS  Google Scholar 

  43. Zhang Z, Deng Z, Wang Q (2016) Illustrating the redox roles of amine and nitro groups linked to p-phenylenediamine and p-nitroaniline upon the improved capacitive performances. J Electroanal Chem 783:295–303

    Article  CAS  Google Scholar 

  44. Tian Y, Liu M, Che R, Xue R, Huang L (2016) Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K4Fe(CN)6 for enhanced performance of active carbon-based capacitors. J Power Sources 324:334–341

    Article  CAS  Google Scholar 

  45. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  46. Hasegawa G, Deguchi T, Kanamori K, Kobayashi Y, Kageyama H, Abe T, Nakaishi K (2015) High-level do** of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chem Mater 27:4703–4712

    Article  CAS  Google Scholar 

  47. Qu J, Geng C, Lv S, Shao G, Ma S, Wu M (2015) Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim Acta 176:982–988

    Article  CAS  Google Scholar 

  48. Liu H, Wang M, Zhai D, Chen X, Zhang Z (2019) Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants. Carbon 155:223–232

    Article  CAS  Google Scholar 

  49. Wang M, Liu H, Zhai D, Chen X, Zhang Z (2019) In-situ synthesis of highly nitrogen, sulfur co-doped carbon nanosheets from melamine-formaldehyde-thiourea resin with improved cycling stability and energy density for supercapacitors. J Power Sources 416:79–88

    Article  CAS  Google Scholar 

  50. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  51. Zhai DD, Liu H, Wang M, Wu D, Chen XY, Zhang ZJ (2019) Integrating surface functionalization and redox additives to improve surface reactivity for high performance supercapacitors. Electrochim Acta 323:134810

    Article  CAS  Google Scholar 

  52. Sun X, Xu D, Hu W, Chen X (2017) Template synthesis of 2D carbon nanosheets: Improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI. ACS Sustain Chem Eng 5:5972–5981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank financial support from National Natural Science Foundation of China (51602003), Startup Foundation for Doctors of Anhui University (J01003211), and University Student Innovation Experiment Project of Anhui University (S201910357378).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Jie Zhang or **%20as%20well%20as%20redox%20additive%20of%20ferrous%20ion%20for%20cooperatively%20boosting%20the%20performance%20of%20supercapacitors&author=Zhong%20Jie%20Zhang%20et%20al&contentID=10.1007%2Fs11581-019-03406-6&copyright=Springer-Verlag%20GmbH%20Germany%2C%20part%20of%20Springer%20Nature&publication=0947-7047&publicationDate=2020-01-09&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.J., Han, B., Zhao, K.Y. et al. Surface modification of carbon materials by nitrogen/phosphorus co-do** as well as redox additive of ferrous ion for cooperatively boosting the performance of supercapacitors. Ionics 26, 3027–3039 (2020). https://doi.org/10.1007/s11581-019-03406-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03406-6

Keywords

Navigation